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NOTE:  

• Updates of this Report will be made available in the future at the project web site 
(http://anemos.cma.fr). 

•  The next update (Version 2.0) will follow the release of the 2003 EWEC 
Conference Proceedings. 
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1. Introduction 

This report will give an overview over past and present attempts to predict wind power for single 
turbines or for whole regions, for a few minutes or a few days ahead. It has been produced for 
the ANEMOS project [1], which brings together many groups from Europe involved in the field, 
with up to 15 years of experience in short-term forecasting. The literature search involved has 
been extensive, and it is hoped that this report can serve as a reference for all further work. 

One of the largest problems of wind power, as compared to conventionally generated electricity, 
is its dependence on the volatility of the wind. This behaviour happens on all time scales, but two 
of them are most relevant: One is for the turbine control itself (from milliseconds to seconds), 
and the other one is important for the integration of wind power in the electrical grid, and 
therefore determined by the time constants in the grid (from minutes to weeks).  

One can distinguish the following types of applications: 

• Optimisation of the scheduling of the conventional power plants by functions such as 
economic dispatch etc. The prediction horizons can vary between 3-10 hours depending on 
the size of the system and the type of conventional units included  (ie for systems including 
only fast conventional units, such as diesel gensets or gas turbines, the horizon can be 
below 3 hours). Only few on-line applications of this type are met today in island or isolated 
systems and the approach remains marginal.  

• Optimisation of the value of the produced electricity in the market. Such predictions are 
required by different types of end-users (utilities, TSOs, ESPs, IPPs,energy traders etc.) and 
for different functions such as unit commitment, economic dispatch, dynamic security 
assessment, participation in the electricity market, etc. The ANEMOS project mainly is 
concerned with the time scale given by the electricity markets, from 0-48 hours. 

• Additionally, even longer time scales would be interesting for the maintenance planning of 
large power plant components, wind turbines or transmission lines. However, the accuracy 
of weather predictions decreases strongly looking at 5-7 days in advance, and such systems 
are only just now starting to appear [2,60,108]. As Still [3] reported, also shorter horizons 
can be considered for maintenance, when it is important that the crew can safely return from 
the offshore turbines in the evening. 

 

1.1 The typical model chain 

A gentle introduction to short-term predictions can also be found in [4]. In general, the models 
can be classified as either involving a Numerical Weather Prediction model (NWP) or not. 
Whether the inclusion of a NWP model is worth the effort and expense of getting hold of it, 
depends on the horizon one is trying to predict. Typically, prediction models using NWP 
forecasts outperform time series approaches after ca 3-6 hours look-ahead time (see also 
section 1.2). Therefore, all models employed by utilities use this approach.  

Two different schools of thought exist w.r.t. short-term prediction: the physical and the statistical 
approach. In some models, a combination of both is used, as indeed both approaches can be 
needed for successful forecasts. In short, the physical models try to use physical considerations 
as long as possible to reach to the best possible estimate of the local wind speed before using 
Model Output Statistics (MOS) to reduce the remaining error. Statistical models in their pure 
form try to find the relationships between a wealth of explanatory variables including NWP 
results, and online measured power data, usually employing recursive techniques. Often, black-
box models like advanced Recursive Least Squares or Artificial Neural Networks (ANN) are 
used. The more successful statistical models actually employ grey-box models, where some 
knowledge of the wind power properties is used to tune the models to the specific domain. Some 
of the statistical models can be expressed analytically; some (like ANNs) cannot. The statistical  
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Figure 1: The various forecasting approaches can be classified according to the 
type of input (SCADA indicates data available on-line). All models involving Meteo 
Forecasts have a horizon determined by the NWP model, typically 48 hours. 
(1):  Short-term statistical approaches using only SCADA as input 

(horizons: <6 hours). 
(2):  Physical or statistical approaches. Good performance for >3 hours. 
(2)+(3):  Physical approach. Good performance for >3 hours. 
(1)+(2): Statistical approach. 
(1)+ (2)+(3): Combined approach.  

 

models can be used at any stage of the modelling, and often they combine various steps 
into one. 

If the model is formulated rather explicitly, as is typical for the physical approach, then the stages 
are downscaling, conversion to power, and upscaling:  

• The wind speed and direction from the relevant NWP level is scaled to the hub height of the 
turbine. This involves a few steps, first finding the best-performing NWP level (often the wind 
speed at 10 m a.g.l. or at one of the lowest model or pressure levels).  

The NWP model results can be for the geographical point of the wind farm or for a grid of 
surrounding points. In the first case the models could be characterised as “advanced power 
curve models”, in the second case as a “statistical downscaling” model. 

The next step is the so-called downscaling procedure. Whether the word comes from the 
earliest approach, where the geostrophic wind high up in the atmosphere was used and then 
downscaled to the turbine hub height, or whether it is used because in some newer 
approaches the coarser resolution of the NWP is scaled down to the turbines surroundings 
using a meso- or microscale model with much higher resolution, is not clear.  

The physical approach uses a meso- or microscale model for the downscaling. This can be 
done in two ways: either the model is run every time the NWP model is run, using the NWP 
model for boundary conditions and initialisation, or the mesoscale model can be run for 
various cases in a look-up table approach. The same is true for microscale models. The 
difference between the two is mainly the maximum and minimum domain size and resolution 
attainable. Note that the use of a meso-scale model is not needed if the NWP prediction is 
already good enough on its own. In some cases, however, the NWP resolution is too coarse 
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to resolve local flow patterns, and additional physical 
considerations of the wind flow can be helpful. 

• The downscaling yields a wind speed and direction 
for the turbine hub height. This wind is then 
converted to power with a power curve. The use of 
the manufacturers power curve is the easiest 
approach, although newer research from a number of 
groups has shown it advantageous to estimate the 
power curve from the forecasted wind speed and 
direction and measured power.  

Some statistical models leave this step out and do a 
direct prediction of the power production, but all 
physical and some statistical models have this 
intermediate step explicitly or at least implicitly. 

Depending on forecast horizon and availability, 
measured power data can be used as additional 
input. In most cases, actual data is beneficial for 
improving on the residual errors in a MOS approach. 
If online data is available, then a self-calibrating 
recursive model is highly advantageous. This is part 
of the statistical approach. It can have the form of an 
explicit statistical model employed with advanced 
auto-regressive statistical methods, or as an ANN type black-box. However, often only 
offline data is available, with which the model can be calibrated in hindsight. 

• If only one wind farm is to be predicted, then the model chain stops here (maybe adding the 
power for the different turbines of a wind farm while taking the wake losses into account). 
Since usually, utilities want a prediction for the total area they service, the upscaling from 
the single results to the area total is the last step. If all wind farms in an area would be 
predicted, this would involve a simple summation. However, since practical reasons forbid 
the prediction for hundreds of wind farms, some representative farms are chosen to serve 
as input data for an upscaling algorithm. Helpful in this respect is that the error of distributed 
farms is reduced compared to the error of a single farm. 

Not all short-term prediction models involve all steps. Actually, leaving out a few steps can be an 
advantage in some cases. So is eg Prediktor independent of online data, and can bring results 
for a new farm from day 1, while the advanced statistical models need older data to learn the 
proper parameterisations. However, this is bought with a reduced accuracy for rather short 
horizons. Alternatively, models not using NWP data have a quite good accuracy for the first few 
hours, but are generally useless for longer prediction horizons (except in very special cases of 
thermally driven winds with a very high pattern of daily recurrence). Landberg [5] has shown that 
a simple NWP + physical downscaling approach is effectively linear, thereby being very easily 
amenable to MOS improvements – even to the point of overriding the initial physical 
considerations.  

The opposite is a direct transformation of the input variables to wind power. This is done by the 
use of grey- or black-box statistical models that are able combine input such as NWPs of speed, 
direction, temperature etc. of various model levels together with on-line measurements such as 
wind power, speed, direction etc. With these models, even a direct estimation of regional wind 
power from the input parameters in a single step is possible. Whether it is better for a statistical 
model to leave out the wind speed step depends on a number of things, like the availability of 
data or the representativity of the wind speed and power for the area of the wind farm or region 
being forecasted. 

 

Figure 2: Two different 
approaches for downscaling. 
NWP-A represents physical 
considerations, NWP-B a statistical 
approach or the use of a meso- or 
microscale model.  
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The optimal model is a combination of both, using physical considerations as far as necessary to 
capture the air flow in the region surrounding the turbines, and using advanced statistical 
modelling to make use of every bit of information given by the physical models. 

 

1.2 Typical results 

The verification of these models is not trivial, since it depends on the cost function involved. The 
usual error descriptors are the Root Mean Square Error (RMSE), the Mean Absolute Error 
(MAE), the Mean Error (ME), histograms of the frequency distribution of the error, the correlation 
function and the R or R2 values. Mostly, the standard error figures are given as percent of the 
installed capacity, since this is what the utilities are most interested in (installed capacity is easy 
to measure); sometimes they are given as percent of the mean production or in absolute 
numbers. The typical behaviour of the error function for models using time series approaches or 
NWP is shown here for the case of Prediktor applied to an older Danish wind farm in the mid-
nineties, using RMSE as the error measure.  

A number of features are noteworthy. Persistence (also called the naïve predictor) is the model 
most frequently used to compare the performance of a forecasting model against. It is one of the 
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Figure 3: Root Mean Square (RMS) error for different forecast lengths and different 
prediction methods. The wind farm is the old Nøjsomheds Odde farm (before 
repowering) with an installed capacity of 5175 kW. NewRef refers to the New Reference 
Model. HWP/MOS refers to the HWP approach (HIRLAM/WAsP/Park, nowadays called 
Prediktor) coupled with a MOS model (Model Output Statistics). 
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simplest prediction models, only second to predicting the mean value for all times, a.k.a. a 
climatology prediction. In this model, the forecast for all times ahead is set to the value it has 
now. Hence, by definition the error for zero time steps ahead is zero. For short prediction 
horizons (eg, a few minutes or hours), this model is the benchmark all other prediction models 
have to beat. This is because the time scales in the atmosphere are in the order of days (at least 
in Europe, where the penetration of wind power is highest). It takes in the order of days for a low-
pressure system to cross the continent. Since the pressure systems are the driving force for the 
wind, the rest of the atmosphere has time scales of that order. High-pressure systems can be 
more stationary, but these are typically not associated with high winds, and therefore not so 
important in this respect. To predict much better than persistence for short horizons using the 
same input, that is, online measurements of the predictand, is only possible with some effort. 

One can see that persistence beats the NWP-based model easily for short prediction horizons 
(ca 3-6 hours). However, for forecasting horizons beyond ca 15 hours, even forecasting with the 
climatological mean (the dashed line) is better. This is not surprising, since it can be shown 
theoretically [27] that the mean square error of forecasting by mean value is half the one of the 
mean square error of a completely decorrelated time series with the same statistical properties 
(read: persistence for very long horizons).  

After about 4 hours the quality of the “raw” NWP model output (marked HWP, full squares) is 
better than persistence even without any postprocessing. The quality of the New Reference 
Model is reached after 5 hours. The relatively small slope of the line is a sign of the poor quality 
of the assessment of the current state of the atmosphere by the NWP. However, calculating 
forward from this point onwards introduces hardly any more errors. This means that the data 
collection and the assessment of the current state of the atmosphere for the NWP is a weak 
point, while the mathematical models are quite good. The first two points in the HWP line are 
fairly theoretical; due to the data acquisition and calculating time of HIRLAM (~4 hours) these 
cannot be used for practical applications and could be regarded as hindcasting. The 
improvement attained through use of a simple linear MOS (the line marked HWP/MOS, open 
squares) is quite pronounced. 

One line of results is missing in this graph (for reasons of sharper distinction between time-
series analysis methods and NWP methods): a result for current statistical methods using both 
NWP and online data as input. That line would of course be a horizon-dependent weighting of 
the persistence and the HWP/MOS approach, being lower for all horizons than all the other 
lines. However, for short horizons, it cannot do (significantly) better than persistence, while for 
long horizons the accuracy is limited by the NWP model. Therefore, the line would rise close to 
the persistence results, and continue staying close to the HWP/MOS line. 

The behaviour shown in the graph is quite common across all kinds of short-term forecasting 
models and not specific to Prediktor, although details can vary slightly, such as the values of the 
RMSE error or the slope of the error quality with the horizon. Typical model results nowadays are 
RMSEs around 10% of the installed capacity. The improvement over the graph shown here is 
mostly due to improvements in NWP models. Model specific items are to be found in the next 
chapter.  

 

 

2. Literature overview 

2.1 Time series models for up to a few hours 

For rather short horizons, the relevant time scales are given by: 

� the mechanics of the wind turbine: typically the generator, gearbox, yaw mechanism and 
most of all, the (blade) pitch regulation. The time scales involved are in the order of the 
short-term turbulence, ie seconds. The purpose is the active control of the wind turbines.  
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� the type of the power system where the wind turbines are integrated. As mentioned in the 
introduction in small or medium isolated systems the relevant time scale is given by the type 
of conventional units (“fast” or “slow”) and the functions for which the forecasts are required 
(ie for economic dispatch horizons can be 10 minutes to 1 hour while for units scheduling a 
few hours head).  

The typical approach is to use time series analysis techniques or neural networks.  

 

2.1.1 Direct time series models 

Bossanyi [6] used a Kalman Filter with the last 6 values as input and got up to 10% improvement 
in the RMS error over persistence for 1-min averaged data for the prediction of the next time 
step. This improvement decreased for longer averages, and disappeared completely for 1-hourly 
averages.  

A similar approach is used in Wilhelmshaven [7] for the estimation of the wind with the aim of 
flicker reduction. Vihriälä [8] uses a Kalman filter for the control of a variable speed wind turbine.  

Dambrosio and Fortunato [9] used a one-step-ahead adaptive control by means of a recursive 
least squares algorithm for the electrical part of the turbine. They show a fast and reliable 
response to a step in the wind. 

Nogaret et al [10] reported that for the control system of a medium size island system, persistent 
forecasting is best with an average of the last 2 or 3 values, ie 20-30 minutes.  

Tantareanu [11] found that ARMA models can perform up to 30% better than persistence for 3-
10 steps ahead in 4-sec averages of 2.5Hz-sampled data.  

Dutton et al [12] used a linear autoregressive model and an adaptive fuzzy logic based model for 
the cases of Crete and Shetland. They found minor improvements over persistence for a 
forecasting horizon of 2 hours, but up to 20% in RMS error improvement for 8 hours horizon. 
However, for longer horizons, the 95% confidence band contained most of the likely wind speed 
values, and therefore a meteorological-based approach was deemed more promising on this 
time scale.  

In the same team, Kariniotakis et al [13,14] were testing various methods of forecasting for the 
Greek island of Crete. These included adaptive linear models, adaptive fuzzy logic models and 
wavelet based models. Adaptive fuzzy logic based models were installed for on-line operation in 
the frame of the Joule II project CARE (JOR3-CT96-0119). 

Fukuda et al [15] worked on an AutoRegressive model for blade angle optimisation. Using data 
mining, they found that the use of additional variables was helpful only in December, but not in 
June.  

Hunt and Nason [16] used an analysis of principal components of wavelets derived from wind 
speed time series for a measure-correlate-predict technique. The use of the words “short-term 
prediction” is not the same as the one used in our context. 

 

2.1.2 Modelling wind speed versus wind power 

Comparison of direct wind power prediction against wind speed forecasts with subsequent 
conversion to wind power [17,18] using autoregressive models showed use of wind speed 
predictions as explanatory variable is important for prediction horizon up to 8-12 hrs. For longer 
prediction horizons, use of separate wind speed forecasts offers no advantage over direct wind 
power prediction. 

Madsen [19] and Nielsen [20] found that two-stage modelling (conversion of wind speed 
predictions to wind power, in which correlation structure in power measurements is disregarded) 
are generally inferior to models that take the power correlation into account. 



ANEMOS ANEMOS_D1.1_StateOfTheArt_v1.1.pdf, 2003.08.12.   

Deliverable D1.1 9/36

Wind farm forecasting using any of the above methods is likely to benefit from forms of 
statistical post-processing such as the MOS system. Any use of meteorological models must 
involve a two-stage process, but if forecast winds are converted to power before insertion into 
the MOS system then it should be possible to optimise the training of the system for power 
prediction. 

Giebel [21] shows that, when using NWP models, it is best to use MOS acting on the 
downscaled wind speed rather than on the final power output. 

 

2.1.3 Neural networks 

Another possibility to use just the input from online measurements is to use artificial neural 
networks. Most groups in the field have used them, but despite their scientific merits in 
improvements over plain persistence, they did not catch on. The improvements attainable were 
usually deemed not enough to warrant the extra effort in training the neural networks.  

Beyer et al [22] found improvements in RMS error for next-step forecasting of either 1-min or 10-
min averages to be in the range of 10% over persistence. This improvement was achieved with 
a rather simple topology, while more complex neural network structures did not improve the 
results further. A limitation was found in extreme events that were not contained in the data set 
used to train the neural network. 

Tande and Landberg [23] examined 10s forecasts for the 1s average output of a wind turbine 
and found that the neural networks did perform only marginally better than persistence. 

Alexiadis et al [24] used the differences of wind speeds from their moving averages (differenced 
pattern method) and found this technique to be superior to the wind speed normally used as 
input. They achieved improvements of up to 13% over persistence, while for the same time 
series the standard neural network approach yielded only 9.5% improvement. 

Bechrakis and Sparis [25] used neural networks to utilise information from the upwind direction. 
Their paper does not give any numbers on the increase over persistence, since their aim is to 
predict the resource rather than to do short-term prediction. 

Sfetsos [26] applied ARIMA and feed-forward neural net methods to wind speed time-series 
data from the UK and Greece, comparing the results of using either 10-minute or hourly 
averaged data to make a forecast one hour ahead. For both data sets, neither forecasting 
method showed a significant improvement compared to persistence using hourly-averaged data, 
but both showed substantial (10-20%) improvement using 10-minute averages. The result is 
attributed to the inability of hourly averages to represent structure in the time series on the high-
frequency side of the ‘spectral gap’, lying at a period of typically around 1 hour. 

 

2.1.4 An explanation of the time series model improvements 

A general note on time series models (neural network or otherwise): Some of the improvement 
of the time series approach over persistence can be explained with a term taking the time series 
(running) mean into account. We tried a few years ago to introduce this as the New Reference 
Model [27] (see the blue line marked NewRef in fig. 3). In essence, it predicts the power p(t) 
using the power p(t-n) (n being n timesteps back) and the mean µ of the time series. Of course, 
disregarding µ and having n=1, this would be the persistence model itself. However, the new 
reference is written as 

p(t)=a(n)*p(t-n) + (1-a(n))*µ. 
 

a(n) is the autocorrelation of the time series n steps back. This simple model can achieve the 
typically 10% RMS error improvements found by many other authors using more or less 
advanced time series analysis techniques. 
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2.2 Numerical Weather Prediction-based models 

For the electrical utility, wind power only has a real influence on day-to-day operations when its 
output surpasses the prediction uncertainty of the load. Contrary to wind, however, load 
forecasting has much higher accuracy, since the load patterns are not so variable and change 
from day to day and from week to week according to (mostly) deterministic parameters like 
temperature and TV programa. Therefore, the electrical load can be predicted with about 1.5% 
accuracy for a 24-h forecast, and with ca 5% accuracy for one week. This is fundamentally 
different from wind power forecasts. 

For the utility, there are two time scales involved: the scheduling of power plants, and the 
market. The typical time scales for start-up of conventional power plants are between 20 min. for 
gas turbines and 8 hours (or perhaps more) for large coal or oil plant. This is different from 
maintenance scheduling, which needs much longer time scales (weeks or months). This is a 
resource optimisation problem, which needs good forecasts. However, for strongly 
interconnected networks, it lost its relevance in favour of buying electricity on the market. The 
assumption here is that there is a sufficiently sized market embedding the utility, with high 
resources and a fast response time. Therefore, in this situation the technical constraints can be 
circumvented with money.  

 

2.2.1 Models no longer or never in action 

Probably the earliest model was developed by McCarthy [28] for the Central California Wind 
Resource Area. It was run in the summers of 1985-87 on a HP 41CX programmable calculator, 
using meteorological observations and local upper air observations. The program was built 
around a climatological study of the site and had a forecast horizon of 24 hours. It forecast daily 
average wind speeds with better skill than either persistence or climatology alone.   

Vitec AB from Sweden is working on a model based on meteorological forecasts from the 
Swedish Meteorological and Hydrological Institute SMHI. So far (2000), nothing is published 
[29].  

Martin et al [30] started to develop a prediction tool for the rather special case of Tarifa/Spain. 
Due to the unique situation of the wind farms at the Strait of Gibraltar, they could predict the 
power output from pressure differences between the measurements at Jerez and Malaga 
airports (west and east of Gibraltar), with the additional use of the Spanish HIRLAM. However, 
since the utilities felt at that time that 48 hours of forecasts would not be useful enough, the 
project was stopped half-way through [31]. 

Papke et al [32] used a data assimilation technique together with three models to get a forecast 
of about 1 hour for the wind fed into the Schleswag grid in the German land of Schleswig-
Holstein. These three models were a statistical model, analysing the trend of the last three 
hours, a translatorical model which moved a measured weather situation over the utility's area, 
and a meteorological model based on very simple pressure difference calculations. No accuracy 
was given. The translatorical model developed into the Pelwin system [33]. On a time scale of 
one hour, the weather fronts coming over the North Sea to Schleswig-Holstein are predicted to 
predict high negative gradients due to the shutdown of wind turbines.  

Another translatorical model was proposed by Alexiadis et al [24,34], which uses a cleaning of 
local influence much like the methodology used in the European Wind Atlas. The Spatial 

                                                      
a A quite prominent example was during the Euro'96 football championships, when in England 
after the semifinal England-Germany a sudden increase of about 1 GW demand could be 
logged within some 20 min. Germany had won in the penalties, and everyone needed a tea to 
calm down, most of which were brewed with an electrical kettle. 
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Correlation Predictor avoids the drawback of the usual constant delay method and shows 
improvements over the latter of up to 30% and more.  

Not directly related to wind energy, Jacobs [35] uses a Kalman Filter to forecast road surface 
temperatures in the Netherlands based on the 2m temperatures of the HIRLAM model of the 
Royal Dutch Meteorological Institute (KNMI).  

 

2.2.2 Research models 

A rather similar approach to Prediktor was developed at the University of Oldenburg [36]. They 
named it Previento [37]. They use the Deutschlandmodell or nowadays the Lokalmodell (LM) of 
the German Weather Service (DWD) as the NWP model. A good overview over the parameters 
and models influencing the result of a meteorological short-term forecasting system has been 
given by Mönnich [38]. He found that the most important of the various submodels being used is 
the model for the atmospheric stability. The submodels for orography and roughness were not 
always able to improve the results. The use of MOS was deemed very useful. However, since 
the NWP model changed frequently, the use of a recursive technique was recommended. A 
large influence was found regarding the power curve. The theoretical power curve given by the 
manufacturer and the power curve found from data could be rather different. Actually, even the 
power curve estimated from data from different years could show strong differences. The latter 
might be due to a complete overhaul of the turbine. The largest influence on the error was 
deemed to come from the NWP model itself.  

LocalPred and RegioPred [39] are a family of tools developed by Martí Perez (formerly CIEMAT, 
now CENER). It involves adaptive optimisation of the NWP input, time series modelling, 
mesoscale modelling with MM5, and power curve modelling. He could show for a case of rather 
complex terrain near Zaragoza (Spain), that the resolution of HIRLAM was not good enough to 
resolve the local wind patterns [40]. The two models in Spain are running on a 0.5°x0.5° and 
0.2°x0.2° resolution, which made a novel downscaling procedure necessary, based on principal 
component analysis and taking further variables into account, predominantly the pressure field. 
The use of WPPT as a statistical post-processor for the physical reasoning was deemed very 
useful [41]. 
 

A new approach is described by Jørgensen et al [42]: they integrate the power prediction module 
within the NWP itself. They call it HIRPOM (HIRlam POwer prediction Model).  

Moehrlen has looked at the resolution needed for successful application of NWP forecasting. In 
a study with the Danish HIRLAM model for one site in Ireland [43] she points out the reasons 
why NWP models are delivering inadequate accuracy of surface wind speeds. Amongst other 
things, these were: so far, no customers made it necessary to increase the accuracy of surface 
winds, since for the existing ones the accuracy was good enough. The topography resolution is 
not good enough to account eg for tunnel effects in valleys. Accurate predictions require high 
resolution and large covered area, however running both is numerically too expensive - only few 
NWP models are able to distinguish between land and sea and can adjust the resolution 
accordingly. In order to improve on the state of things, she calculated the power directly in the 
NWP model. This has the advantage that "major physical properties like direction dependent 
roughness, actual density, and stratification of the atmospheric boundary layer can be used in 
the calculations."  

In different runs with horizontal model resolutions of 30 km, 15 km, 5 km and 1.4 km for two 
months in January 2001, the most common statistical accuracy measures (MAE, RMSE, 
correlation etc) did improve only slightly with higher resolution. However, peak wind speeds were 
closer to the measured values for the high-resolution forecasts. For the higher resolution 
forecasts, the best model layers were ones closer to the ground than in the coarser models. For 
the errors, she points out that phase errors (the timing of the frontal system) has a much larger 
influence on the error scores (and eventual payments) than level errors. As one possible 
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remedy, she proposes to use free-standing turbine data as input for the NWP, thereby 
increasing the observational meteorological network.  

In a follow-up paper [44], she shows the difference between the usual one-hour average wind 
speed and the instantaneous wind speeds. She concludes that is important to calculate the 
power within the model itself, to make use of its significantly shorter time step. (The difference 
comes of course because the energy in the wind is proportional to the cube of the wind speed, 
and does not depend linearly on it.)  

For the same set-up, Jørgensen et al [45] make a number of interesting points on the coupling 
of a NWP model to wind power forecasts. Examining 25 especially bad forecasted days from 15 
months for the Danish TSO Eltra, he found that in all cases the error came from the NWP model 
and not from the WPPT upscaling. Here too he found that using higher resolution in HIRLAM, 
the scores do not improve substantially, indicating that level errors are smaller and gradients 
sharper in the higher resolution. This leads to higher error measures for phase errors. On the 
weather dependence of the errors, he writes: "The more steady the flow is and the longer the 
controlling low pressure is towards the north, the better the quality of the forecast." He also 
notes on the (usually in NWP models just one value per grid box) roughness: "Most turbines are 
positioned such that the local roughness is lower than the average roughness in the 
corresponding NWP model grid box. This is at least true for the prevailing wind direction [...]. 
Thus, a NWP model will in average have a negative wind bias where turbines are installed 
unless direction dependent roughness is used. "  
 

Barstad [46] used a library of pre-calculated meso-scale model results to downscale the wind 
from the large-scale weather situation to the actual site in Nord-Trøndelag county, Norway. The 
classification of the overall weather was derived from NCEP/NCAR Reanalysis data [47]. For the 
32 cases found, MM5 was run to transform the large-scale flow to the wind at the actual (very 
complex) site. This approach was used together with Reanalysis to determine the resource in 
the vicinity, and was also used in conjunction with the HIRLAM system of the Norwegian 
Meteorological Institute to yield short-term forecasts. Berge [48] presented the whole system in 
Norrköping. A larger report [49] additionally compares the performance of MM5 with results from 
the CFD model 3DWind. HIRLAM was run on a horizontal resolution of 10 km, MM5 on 1 km 
and 3DWind with a resolution varying from 30 m to 500 m. To compare these models, a 
statistical model has been developed. Bremnes [50] reported during the Norrköping workshop 
on the use of “ensemble” forecasts, to yield the uncertainty of a forecast. His approach was to 
transform the forecasts according to the error distribution, standardise the centred forecast 
errors using the variance estimate, and retransform the wind speed. The larger report shows 
that the predicted frequencies actually are fairly accurate (ie, the 95% fractile, defined as a 95% 
probability that the power production will be below this value, was reached ca. 95% of the time). 
The best selection of explanatory variables based on HIRLAM10 was to use the wind speed at 
10 m a.g.l., the wind direction, the wind speed increase and the time of day/horizon. One result 
of the comparison of the physical models was that despite the fact that the finer models did 
present more details of the forecasts, they always were fed with the initial and boundary 
conditions from the coarser HIRLAM model, and therefore were bound to have the same 
temporal development as the larger model. Also, the improvements in the details being brought 
by the mesoscale model and the CFD model did not show up in the error scores for a horizon of 
more than 20 hours. As a side note, the model speed-ups from MM5 and WAsP were 
compared, showing that in the highly complex terrain of Norway, MM5 (on 1 km resolution) 
tended to underpredict the speed-up effects by around 20%.  
 

Enomoto et al [51] used the LOCALS model (Local Circulation Assessment and Prediction 
System) to forecast the power production of the TAPPI wind farm in Aomori Prefecture, Japan. 
Despite using the model with a 500-m grid, the result is still an RMSE of 15% of the installed 
capacity. Their results indicate that the significant differences in turbulence intensity between the 
turbines are not modelled correctly. 
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GEO mbh and GKSS [52] are currently developing the non-hydrostatic meso-scale model 
GEOFFREY (GESIMA-based Optimisation of Forecasts For Renewable Energy Yield). The 
model is going to be driven by the medium-range forecast of a private weather forecaster. 

 

2.2.3 Models currently in use 

Already in 1990, Landberg [53] developed a short-term prediction model based on physical 
reasoning similar to the methodology developed for the European Wind Atlas [54]. The idea is to 
use the wind speed and direction from a NWP, then transform this wind to the local site, then to 
use the power curve and finally to modify this with the park efficiency. Note that the statistical 
improvement module MOS can either set in before the transformation to the local wind, or 
before the transformation to power, or at the end of the model chain trying to change the power. 
A combination of all these is also possible. He found that for the MOS to converge, about 4 
months worth of data were needed (which might not be available when setting up the model for 
a new customer). Landberg used the Danish or Risø version for all the parts in the model: the 
HIRLAM model of the DMI as NWP input, the WAsP model from Risø to convert the wind to the 
local conditions and the Risø PARK model to account for the lower output in a wind park due to 
wake effects. Two general possibilities for the transformation of the HIRLAM wind to the local 
conditions exist: the wind could be from one of the higher levels in the atmosphere, and hence 
be treated as a geostrophic wind, or the wind could be the NWPs offering for the wind in 10m 
a.g.l. Usually this wind will not be very accurately tailored to the local conditions, but will be a 
rather general wind over an average roughness representative for the area modelled at the grid 
point. In the NWP, even orography on a scale smaller than the spatial resolution of the model is 
frequently parameterised as roughness. This point is less important now, with the advances in 
computing power since the inception of the model and the subsequently increased horizontal 
resolution. If the wind from the upper level is used, the procedure is as follows: from the 
geostrophic wind and the local roughness, the friction velocity u* is calculated using the 
geostrophic drag law. This is then used in the logarithmic height profile, again together with the 
local roughness. If the wind is already the 10m-wind, then the logarithmic profile can be used 
directly.  

The site assessment regarding roughness is done as input for WAsP. There, either a roughness 
rose or a roughness map is needed. From this, WAsP determines an average roughness at hub 
height. This is the roughness used in the geostrophic drag law or the logarithmic profile.b Only 
one WAsP correction matrix is used, which could be too little for a larger wind farm [55]. In his 
original work, Landberg and Watson [56] determined the ideal HIRLAM level to be modelling 
level 27, since this gave the best results. However, the DMI changed the operational HIRLAM 
model in June 1998, and Joensen et al [57] found that after the change the 10 m wind was much 
better than the winds from the higher levels. So in the last iterations of the Risø model, the 10 m 
wind is used. After the change, passing storm systems were also better predicted, only missing 
the level once and not missing the onset at all [58]. The model has also been used at ESB 
(Electricity Supply Board, Ireland) [59] and in Iowa [103]. There, for predictions of the Nested 
Grid Model of the US National Weather Service, the use of MOS was essential. This was partly 
because the resolution of the Nested Grid Model was ca. 170 km, and no local WAsP analysis of 
the site was available. Prediktor is also used in the generic SCADA system CleverFarm for 
maintenance scheduling [60]. 
 

The Wind Power Prediction Tool (WPPT) has been developed by the Institute for Informatics 
and Mathematical Modelling (IMM) of the Technical University of Denmark. WPPT is running 
operationally in the western part of Denmark since 1994 and in the eastern part since 1999. 
Initially, they used adaptive recursive least squares estimation with exponential forgetting in a 

                                                      
b In Previento, the geostrophic profile is used in conjunction with the roughness used by the 
NWP, not the mesoscale roughness. 
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multi-step set-up to predict from 0.5 up to 36 hours ahead. However, due to the lack of quality in 
the results for the higher prediction horizons, the forecasts were only used operationally up to 12 
hours ahead. In a later version, HIRLAM forecasts were added [61], which allowed the range of 
useful forecasts to be extended to 39 hours ahead. A data-cleaning module was developed, as 
was a rudimentary upscaling model. This version has successfully operated at Elsam and other 
Danish utilities [62].  

WPPT is a modelling system for predicting the total wind power production in a larger region 
based on a combination of on-line measurements of power production from selected wind 
farms, power measurements for all wind turbines in the area and numerical weather predictions 
of wind speed and wind direction. If necessary, the total region is broken into a number of sub-
areas. The predictions for the total region are then calculated using a two-branch approach: 

In the first model branch predictions of wind power are calculated for a number of wind farm 
using on-line measurements of power production as well as numerical weather predictions as 
input. The prediction of the total power production in the area is calculated by up-scaling the sum 
of the predictions for the individual wind farms. 

The second model branch predicts the area power production explicitly by using a model linking 
off-line measurements of area power production to the numerical weather predictions [63]. 

For both model branches, the power prediction for the total region is calculated as a sum of the 
predictions for the sub-areas. The final prediction of the wind power production for the total 
region is then calculated as a weighted average of the predictions from the two model branches. 

A central part of this system is statistical models for short-term predictions of the wind power 
production in wind farms or areas. Recent research has demonstrated that conditional 
parametric models show a significant improvement of the prediction performance compared to 
more traditional parametric models. The conditional parametric is a non-linear model formulated 
as a linear model in which the parameters are replaced by smooth, but otherwise unknown, 
functions of one or more explanatory variables. These functions are called coefficient-functions. 
For on-line applications it is advantageous to allow the function estimates to be modified as data 
become available. Furthermore, because the system may change slowly over time, observations 
should be down-weighted as they become older.  For this reason a time-adaptive and recursive 
estimation method is applied. 

The time-adaptivity of the estimation is an important property in this application of the method as 
the total system consisting of wind farm or area, surroundings and numerical weather prediction 
(NWP) model will be subject to changes over time. This is caused by effects such as aging of 
the wind turbines, changes in the surrounding vegetation and maybe most importantly due to 
changes in the NWP models used by the weather service as well as changes in the population 
of wind turbines in the wind farm or area. 
 

The WPPT and Prediktor lines have recently been combined and extended to become Zephyr 
[64]. This new model is about to be installed in Western Denmark, with installation in all other 
major Danish utilities coming before the end of 2003.  
 

ARMINES and RAL have developed work on short-term wind power forecasting since 1993. 
Initially, short-term models for the next 6-10 hours were developed based on time series analysis 
to predict the output of wind farms in the frame of the LEMNOS project (JOU2-CT92-0053). The 
developed models were integrated in the EMS software developed by AMBER S.A and installed 
for on line operation in the island of Lemnos.  

Various approaches have been tested for wind power forecasting based on ARMA, neural 
networks of various types (backpropagation, RHONN etc), fuzzy neural networks, wavelet 
networks etc. From this benchmarking procedure, models based on fuzzy neural networks were 
found to outperform the other approaches [14,65,66]. 
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In the frame of the project CARE (JOR-CT96-0119) [67], more advanced short-term models 
were developed for the wind farms installed in Crete. In the ongoing project MORE-CARE 
(ERK5-CT1999-00019), ARMINES developed models for the power output of a wind park for the 
next 48/72 hours based on both on-line SCADA and Numerical Weather Predictions 
(meteorological forecasts). The developed forecasting system can generically accept as input 
different types of meteorological forecasts (ie Hirlam, Skiron etc.). 

The wind forecasting system of ARMINES integrates: 

• short-term models based on the statistical time-series approach able to predict 
efficiently wind power for horizons up to 10 hours ahead. 

• longer-term models based on fuzzy neural networks able to predict the output of a 
wind farm up to 72 hours ahead. These models receive as input on-line SCADA data 
and numerical weather predictions [68]. 

• combined forecasts: such forecasts are produced from intelligent weighting of short-
term and long term forecasts for an optimal performance over the whole forecast 
horizon. 

The developed prediction system is integrated in the MORE-CARE EMS software and is 
installed for on-line operation in the power systems of Crete and Madeira [69]. A stand alone 
application of the wind forecasting module is configured for on-line operation in Ireland [70]. An 
evaluation of this application is presented in [71]. The average reported error is in the order of 
10% of the installed power. 

For Ireland, they show that using a power curve derived from HIRLAM wind and measured 
power can improve the forecast RMSE by nearly 20% in comparison to using the manufacturers 
power curve [70].  

80 MW of wind power are installed on the island of Crete where the demand varies between 
170-450 MW throughout the year. Wind penetration reaches high levels. Furthermore, the fact 
that the network is an autonomous one, makes the use of wind power forecasting necessary for 
an economic and secure integration of wind farms in the grid. Currently, the MORE-CARE 
system [72] is installed and operated by PPC in Crete and provides wind power forecasts for all 
the wind farms for a horizon of 48 hours ahead. These forecasts are based on numerical 
weather predictions provided by the SKIRON system, which is operated by IASA. On-line data 
are provided by the SCADA system of the island. 

In Portugal, the MORE-CARE system is operated by EEM and provides forecasts for the 
production of the wind farms at the island of Madeira. The prediction modules provide forecasts 
for the short-term up to 8 hours ahead using on-line SCADA data as input. Moreover, MORE-
CARE provides predictions for the run-of the river hydro installations of the island. 
 

The ISET (Institut für Solare Energieversorgungstechnik) has since 2000 operatively worked 
with short-term forecasting, using the DWD model and neural networks. It came out of the 
German federal monitoring program WMEP (Wissenschaftliches Mess- und 
EvaluierungsProgramm) [73], where the growth of wind energy in Germany was to be monitored 
in detail. Their first customer was E.On, who initially lacked an overview of the current wind 
power production and therefore wanted a good tool for nowcasting [74]. Then, their model was 
called Advanced Wind Power Prediction Tool AWPT. 

Ernst and Rohrig [75] reported in Norrköping on the latest developments of ISET's Wind Power 
Management System WPMS. They now predict for 95% of all wind power in Germany. In some 
areas of German TSOs E.On Netz and Vattenfall Europe Transmission, wind power has 
exceeded 100% coverage at times. One additional problem in Germany is that the TSOs even 
lack the knowledge of the currently fed in wind power. In the case of E.On Netz, the ca 5 GW 
installed capacity are upscaled from 16 representative wind farms totalling 425 MW. Their input 
model is the Lokalmodell of the DWD, which they then feed into an ANN. To improve on the LM, 
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they transform the predicted wind to the location of wind farms using the numerical mesoscale 
atmospheric model KLIMM (KLImaModell Mainz). The LM is run twice daily with a horizontal 
resolution of 7 km, forecasting up to 48 hours ahead. The ANN also provides for an area power 
curve. 
 

EWind is an US-American model by TrueWind, Inc [76]. Instead of using a once-and-for-all 
parameterisation for the local effects, like the Risø approach does with WAsP, they run the 
ForeWind numerical weather model as a meso-scale model using boundary conditions from a 
regional weather model. This way, more physical processes are captured, and the prediction can 
be tailored better to the local site. In the initial configuration of the eWind system, they used the 
MASS (Mesoscale Atmospheric Simulation System) model [78]. Nowadays, additional 
mesoscale models are used: ForeWind, MM5, WRF, COAMPS, workstation-ETA and OMEGA. 
To iron out the last systematic errors they use adaptive statistics, either a traditional multiple 
screening linear regression model, or a Bayesian neural network. Their forecast horizon is 48 
hours. They published a 50% improvement in RMSE over persistence in the 12-36 hour range 
for 5 wind towers in Pennsylvania [77]. 

EWind and Prediktor are currently being used in California [78]. Both are delivering forecasts for 
two large wind farm areas, 900 turbines worth 90 MW in Altamont Pass and 111 turbines worth 
66.6 MW at San Gorgognio Pass. The first results for an initial 28-day period are published in 
this report. TrueWind reaches a MAE of 10.8% of the installed capacity for same day 
forecasting, and 11.7% for next day. Prediktor (using the ETA model run by NOAA of the US) 
achieved a MAE of 2.4 m/s for the 48-hour horizon, but was not yet fully optimised for this 
application.  

That report also names a few papers I had never seen before, such as works by Wendell [79], 
Gilhousen [80], Carter and Gilhousen [81], Wegley [82] and Notis [83] (all works quoted as found 
in [78]).  
 

The strong wind energy growth in Spain led Red Eléctrica de España (the Spanish TSO) to have 
the Sipreólico tool developed by the University Carlos III of Madrid [84]. The tool is based on 
Spanish HIRLAM forecasts, taking into account hourly SCADA data from 80% of all Spanish 
wind turbines [85]. These inputs are then used in adaptive non-parametric statistical models, 
together with different power curve models. There are 9 different models, depending on the 
availability of data: one that work along the lines of the models in section 2.1, not using NWP 
input at all. Three more include increasingly higher terms of the forecasted wind speed, while 
further three are also taking the forecasted wind direction into account. The last two are 
combinations of the other ones, plus a non-parametric prediction of the diurnal cycle. These 9 
models are recursively estimated with both a Recursive Least Squares (RLS) algorithm or a 
Kalman Filter. For the RLS algorithm, a novel approach is used to determine an adaptive 
forgetting factor based on the link between the influence of a new observation, using Cook’s 
distance as a measure, and the probability that the parameters have changed. The results of 
these 18 models are then used in a forecast combination, where the error term is based on 
exponentially weighted mean squared prediction error with a forgetting factor corresponding to a 
24-h memory. The R2 for all of Spain is more than 0.6 for a 36-h horizon. The main problem of 
the Spanish case is the Spanish HIRLAM model in conjunction with the complex terrain. The 
resolution of HIRLAM is not enough to resolve the flow in many inland areas. The model itself 
works very well when driven by measured wind speeds instead of predicted ones (with R2 over 
0.9 for the whole horizon).  

 

2.2.4 The Norrköping workshop 

A good overview over some of the activity going on in the field was provided at the recent (Sept. 
2002) IEA Joint Action Symposium in Norrköping (Sweden). Some of the papers have already 
been cited in the relevant paragraphs below or above.  
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Garrad Hassan [86] now has a forecasting model, based on NWP forecasts from the British 
MetOffice. It uses "multi-input linear regression techniques" to convert from NWP to local wind 
speeds. For T+24h, they reach 35-60% improvement over persistence. 

3Tier Environmental Forecast Group [87] works with a nested NWP and statistical techniques 
for the very short term in the Pacific Northwestern US. They show performance figures in line 
with most other groups in the field. 

Tammelin [88] reported for the Finnish case that the Finnish Meteorological Institute is working 
on wind power forecasts, using their version of the HIRLAM model plus a number of smaller 
scale models to scale the wind speed down to the surface. An additional problem appearing in 
Finland is the difference in power curve due to low temperatures and icing.  

Magnusson [89] spoke about wind forecasts for wind engineering purposes, protecting bridges 
and airports. Since the Swedish Meteorology and Hydrology Institute's HIRLAM model is not 
running in sufficient resolution for direct coupling into a CFD model (44 or 22 km), they use 
DYNAD as an intermediate tool. The CFD modelling is done on a scale of 25 m and yields 
turbulence levels as the main result.  

Schwartz and Milligan [90] tried different ARMA models (AutoRegressive Moving Average) for 
forecasts up to 6 hours for two wind farms in Minnesota and Iowa. Their main conclusion was 
that model performance was highly dependent on the training period - one should always try to 
have a parameter set-up procedure using data from a very recent period.  

ECN [91] has developed a forecasting system similar to Prediktor.  

Holttinen [92] presented a different perspective to short-term forecasting. Since all current 
models have the error rising with the forecasting horizon, she looks at the benefits of adjusting 
the market rules to be more wind power friendly. In particular, the current NordPool agreement 
does trade on 1200 hours for the next full day ahead. This means that the most important 
forecasting has to be done for the 13-37 h prediction horizon at 1100 hours. The penalty for 
wrong predictions are fairly steep in this set-up, since either the producer has to sell the 
electricity on the spot market (if there is demand at all), or has to pay an up-regulation fee to the 
market.  This could be avoided with more flexible market mechanisms, eg looking only 6 hours 
or even only 1 hour ahead. Using the current forecasting tools for Denmark (WPPT), she 
calculates a 15% higher value of wind power for a 6-12-h market, and a 30% higher income for a 
1-h market, compared to the current 13-37-h market. She also makes the point that wind power 
could yield higher income in Denmark, if there would be a cable connecting the western part with 
the east. In this set-up, the wind power forecasting errors would be reduced by 9 % due to the 
larger catchment area.  

 

2.3 Evaluation of forecasting models 

Most of the errors on wind power forecasting stem from the NWP model. There are two types of 
error: level errors and phase errors. Consider a storm front passing through: a level error 
misjudges the severity of the storm, while a phase error misplaces the onset and peak of the 
storm in time. While the level error is easy to get hold of using standard time series error 
measures, the phase error is harder to quantify, although it has a determining impact on the 
traditional error scores.  

Landberg and Watson [56] pointed out that the use of the mean error may lead to 
misinterpretation as both high and low absolute errors may give a low mean error. 

Kariniotakis [93] emphasises the importance of evaluating the performance of a model against a 
variety of criteria, and particularly of using both RMSE and MAE of forecasts. The improvement 
of one model over another as measured by MAE is lower than that by RMSE as the RMSE 
weights large errors. In some cases a positive RMSE may even correspond to a negative MAE 
improvement for certain time steps. The same has also been found by Giebel [21], where 
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optimising a MOS function’s parameters lead to different results depending on whether the MAE 
was the cost function or the RMSE. 

These error measures work well when used for the same farm and the same time series. Farms 
with differently variable time series are not that easy to compare. For this reason the skill score 
was developed, which takes the different variability of the time series into account. In this way, 
different results can be compared against each other, without having to worry about the 
properties of the different time series. 

Among the most important forecasts are the forecasts of sudden and pronounced changes, like 
a storm front passing the utility’s area. To develop a measure for the quality of these forecasts is 
very difficult, however, and the best way to get a feeling for the quality of the forecasts is visual 
inspection of the data set [eg 94]. Other uses of short-term prediction, related to storms, are the 
possibility of scheduling maintenance after or during a storm, as has happened in Denmark 
during the hurricane in Dec 1999. The same applies for maintenance on offshore wind farms, 
where the sea might be too rough to safely access the turbines.  

Costello et al [70] show an interesting approach: “In order to focus on particular situations, a 
dynamic approach was developed to examine correlations in detail. The aim is to estimate the 
probability of situations where Hirlam fails to predict local conditions for a certain period of time 
(i.e. due to local weather situations). For this purpose, cross-correlation was estimated using a 
sliding window of 100 hours. Then, the distribution of the obtained values was estimated as 
shown in Figure 4.  The range of the values is between {–0.4 to 0.92}. This indicates that one 
should expect short periods at which, Hirlam forecasts will not be reliable. The frequency of 
these periods is however limited since the distributions are centered around the 0.8 correlation 
value.” 
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Figure 4: Distribution of correlation coefficient r(100) between Hirlam  wind 
speed forecasts and measured wind park power. Source: [70] 

Nowadays, the use of wind power forecasts for trading wind production in a free electricity 
market emerges the consideration of criteria able to assess in a more wide way the uncertainty 
of a prediction model. I.e., given that underestimation of the expected production has a different 
financial impact than an overestimation, the frequency of positive and negative errors, as well as 
the cumulative energy deficit or surplus, become of particular importance. 

 

2.4 Uncertainty of wind power predictions  

Spot predictions of the wind production for the next 48 hours at a single wind farm or at a 
regional/national level are a primary requirement for end-users. However, for an optimal 



ANEMOS ANEMOS_D1.1_StateOfTheArt_v1.1.pdf, 2003.08.12.   

Deliverable D1.1 19/36

management of the wind power production it is necessary to also provide end-users with 
appropriate tools for on-line assessment of the associated prediction risk. Confidence intervals 
are a response to that need since they provide an estimation of the error linked to power 
predictions. 

While the estimation of confidence intervals for various types of mathematical models is an 
established field, only few papers specific to the short-term wind power prediction problem are 
published.  

While statistical models already have an estimate of the uncertainty explicitely integrated in the 
method, physical models need some additional processing to yield an uncertainty result as well. 

Typical confidence interval methods, developed for models like neural networks, are based on 
the assumption that the prediction errors follow a Gaussian distribution. This however is often 
not the case for wind power prediction where error distributions may exhibit some skewness, 
while the confidence intervals are not symmetric around the spot prediction due to the form of 
the wind farm power curve. On the other hand, the level of predicted wind speed introduces 
some nonlinearity to the estimation of the intervals; eg at the cut-out speed, the lower power 
interval may suddenly switch to zero.  
 

Pinson and Kariniotakis [95] propose a methodology for the estimation of confidence intervals 
based on the resampling approach. This method is applicable to both physical and statistical 
wind power forecasting models. The authors also present an approach for assessing on-line the 
uncertainty of the predictions by appropriate prediction risk indices based on the weather 
stability.  

The limits introduced by the wind farm power curve (min, max power) are taken into account by 
the method proposed by Luig et al [96] and Bofinger et al [97]. This method is models errors 
using a ß-distribution, the parameters of which have to be estimated by a post-processing 
algorithm. This approach is applicable to models that use a well-defined wind park power curve.  

Lange and Waldl [99,98] classified wind speed errors as a function of look ahead time. The 
errors in wind speed of the older DWD Deutschlandmodell are fairly independent of the 
forecasted wind speed, except for significantly lower errors for the 0 and 1 m/s bins [99].Another 
result was that the error only for some wind farms depended on the Grosswetterlage, as 
classified by the DWD. Due to the non-linearity of the power curve, wind speed forecasting 
errors are amplified in the high-slope region between the cut-in wind speed of the turbine and 
the plateau at rated wind speed, where errors are dampened. Landberg et al [107] reported the 
same behaviour. Nielsen [100] also shows the WPPT error for western Denmark to have its 
peak at a forecast of half the installed capacity. This method is only applicable to models that 
provide intermediate forecasts of wind speed at the level of the wind park.  

These are results for single wind farms. Since the correlation between forecast errors is rather 
weak with distance, the forecasts for a region are much more accurate than the forecast for 
single wind farms (as Focken points out [101, 102]). This error reduction scales with the size of 
the region in question. This means that only a certain number of wind farms is needed to predict 
the power production in a region well enough. For regions, the error autocorrelation is also 
stronger on a time scale of days than for single wind farms.  

 

2.5 Ensemble forecasts 

The increase in available computer power led to some thinking on how to use the increase 
properly. Instead of just upping the resolution more and more, the processing cycles might be 
better used in reducing the other errors. This can be done using ensembles of forecasts, either 
as a multi-model ensemble, using many different NWP models of at least different 
parameterisations within the same model, or by varying the input data and calculating an 
ensemble of different input values. The use of this is to be able to point out the uncertainty 
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inherent in the forecasts. For example, if a slight variation in the initial state of the model (which 
still is consistent with the measured data) leads to a larger variation a few days ahead, where eg 
a low pressure system takes one of two distinct tracks, then the situation is different from one 
where all low pressure tracks more or less run over the same area. A number of groups in the 
field are currently investigating the benefits of ensemble forecasts. 

 

Giebel et al [103] and Waldl and Giebel [104,105] investigated the relative merits of the Danish 
HIRLAM model, the Deutschlandmodell of the DWD and a combination of both for a wind farm 
in Germany. There, the RMSE of the Deutschlandmodell was slightly better than the one of the 
Danish model, while a simple arithmetic mean of both models yields an even lower RMSE.  

Moehrlen et al [106] use a multi-model ensemble of different parameterisation schemes within 
HIRLAM. They make the point that, seeing that the observational network has a spacing of 30-
40 km, it might be a better use of resources to run the NWP model not in the highest possible 
resolution (in the study 1.4 km), but use the computer instead for calculating ensembles. A 
doubling of resolution means a factor 8 in running time (since one has to double the number of 
points in all four dimensions). The same effort could therefore be used to generate 8 ensemble 
members. The effects of lower resolution would not be so bad, since effects well below the 
spacing of the observational grid are mainly invented by the model anyway, and could be taken 
care of by using direction dependent roughnesses instead.  

Their group is also the leader of an EU-funded project called Honeymoon. One part of the 
project is to reduce the large-scale phase errors using ensemble prediction.  

Landberg et al [107] used a poor man’s ensemble to estimate the error of the forecast for one 
wind farm. A poor man’s ensemble is formed using the overlapping runs of the forecasting 
model from different starting times for a given point in time. In his case, HIRLAM comes every 6 
hours with a model horizon of 48 hours, leading to an ensemble size of up to 8 members for the 
same time. The assumption is that when the forecasts change from one NWP run to the next, 
then the weather is hard to forecast and the error is large. However, no conclusive proof for this 
intuitive assumption could be found. 

In Denmark, the Zephyr collaboration has now a PSO-funded (ORDRE-101295 / FU 2101) 
three-year project [108] on the use of different kinds of ensembles for utility grade forecasting. 
Amongst others, the NCEP/NCAR and ECMWF ensembles are used, multi-model ensembles 
(with input from both DMI and DWD) are compared, and some methods for a good visual 
presentation of the uncertainty are researched. 

While Bremnes [50] talks of ensemble forecasting, his method of probabilistic forecasts is not 
comparable to the other ensembles in this section, since they are not based on different runs of 
NWP models.  

Roulston et al [109] evaluated the value of ECMWF forecasts for the power markets. Using a 
rather simple market model, they found that the best way to use the ensemble was what they 
called climatology conditioned on EPS (the ECMWF Ensemble Prediction System). The 
algorithm was to find 10 days in a reference set of historical forecasts for which the wind speed 
forecast at the site was closest to the current forecast. This set was then used to sample the 
probability distribution of the forecast. This was done for the 10th, 50th and 90th percentile of the 
ensemble forecasts.  

 

2.6 The value of forecasting 

Even though the case for forecasting is an easy one, there are not many analyses that have 
looked in detail into the benefits of forecasting for a utility. Partly this lack of analyses stems from 
the fact that a lot of data input and a proper time step model are needed to be able to draw valid 
conclusions.  
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Milligan et al [110] used the Elfin model to assess the financial benefits of good forecasting, 
taking into account the load time series, a wind time series, the distribution of power plants for 
different utilities, and the forced outage probabilities of the normal plant mix. Even though his 
method of simulating the forecast error was not very close to reality, some general conclusions 
could be drawn. When varying the simulated forecast error for three different utilities, zero 
forecast error always came out advantageously. The relative merit of over- respectively 
underpredicting varied between the two utilities analysed in detail: while underpredicting was 
cheaper for one utility, the opposite held true for the other. The cost penalty in dependency of 
the forecast error was dependent very much on the structure of the plant mix and the power 
exchange contracts. Generally speaking, a utility with a relatively large percentage of slow-start 
units is expected to benefit more from accuracy gains.  

Hutting and Cleijne [111] analysed the proposed structure of the Dutch electricity exchange, and 
found that 1500 MW of offshore wind power could achieve an average price of 3.5 €c/kWh, 
when coupled with back-up conventional plant. This assumes that "75% of the output can be 
predicted well enough for the market". Perfect prediction would raise the price to 4 €c/kWh. 
However, building 6000 MW of wind power would decrease the price to 2.9 €c/kWh. Reducing 
the specific power of the rotor from 500 to 300 W/m2 would decrease the overall power output, 
but increase the capacity factor, thereby increasing the predictability and therefore enhancing 
the value by an extra 0.05 €c/kWh. This would actually improve the price performance ratio by 
about 10%, just by installing larger blades on the turbines. Spreading out the wind farms along 
the coast would increase the reliability of the generation and therefore lead to another 
0.15 €c/kWh.  

Nielsen et al [112] assessed the value for Danish wind power on the NordPool electricity 
exchange to be 2.4 €c/kWh in a year with normal precipitation. This would be reduced by 0.13-
0.27 €c/kWh due to insufficient predictions. The same result is expressed as the penalty due to 
bad prediction of wind power being 12% of the average price obtained on NordPool by Sørensen 
and Meibom [113].  

Kariniotakis and Miranda [114] propose a methodology to assess the benefits from the use of 
advanced wind power and load forecasting techniques for the scheduling of a medium or large 
size autonomous power system. The case study of the Greek island of Crete is examined. The 
impact of forecasting accuracy on the various power system management functions is analysed. 
According to the calculations in [115] the accuracy of the prognostic tools should be improved to 
more than 90% to reduce the costs for regulating power to an acceptable level.  

Gilman et al [116] state that TrueWind’s forecasting saved Southern California Edison $ 2 million 
in imbalance cost for December 2000 alone, compared to a system based on pure climatology. 

Mylne [117] used a multi-element contingency table technique to estimate the value of 
persistence and NWP forecasting for a single 1.65 MW turbine under the UK NETA trading 
system at a look-ahead of between 7.5 and 13 hours. The value of the NWP forecast over 
persistence was found to range from a few pence to as much as £7 per hour. Assuming a 30 % 
capacity factor, this corresponds to a forecast value ranging from around 0.03 to 0.3 €c/kWh. 

The potential value of forecasting to wind power generators in the UK was illustrated by Bathurst 
and Strbac [118] shortly after the introduction of the New Electricity Trading Arrangements 
(NETA) in March 2001. Under NETA, the imbalance charges (charges for over- or under-
delivery) are determined by market conditions and can lead to severe penalties for generators 
who cannot make accurate production forecasts. Indeed, in the first week of NETA’s operation, 
imbalance charges were such that wind generation had net negative value: -0.41 p/ kWh (~ -0.6 
€c/kWh) using a standard forecasting method. 

Ensslin [119] talks about the value of a forecasting tool in the framework of an “Internet-based 
information system for integration of Renewable Energy Sources and Distributed Generation in 
Europe”. 
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While not directly connected to wind power forecasts, Klein and Pielke [120,121] looked at 
lawsuits brought against weather forecaster in the US. Generally speaking, the results are only 
valid for the US. The public forecasters there are usually immune under the law, which 
especially applies to exercise of a discretionary duty. This is strictly true for the federal 
government, while state legislation usually provides similar arrangements. However, “the 
government’s failure to follow a mandatory statute, regulation, or policy could expose it to 
liability”. The situation is different for private forecasters. Only two cases were filed for weather 
related forecasts so far, both of which were ruled in favour of the defendant. In the case Brandt 
vs. The Weather Channel, the judges (amongst other things) argued that “because prediction of 
weather is precisely that — a prediction — a weather forecaster should not be subject to liability 
for an erroneous forecast. Predicting possible future events whose outcome is uncertain is not 
an exact science for which a broadcaster should be held liable.” From other fields (think 
securities), more court cases are available. In these cases, the main allegation was fraud, which 
is reasonable enough (and thrown out of court relatively easily if it is a false allegation). The 
authors conclude with three pieces of advice to limit the exposure of professional forecasters to 
lawsuits: “The best defense against liability is, first, for a company and its employees to make 
their forecasts in good faith using reasonable care. Second, companies should engage in a 
rigorous evaluation of their forecasts products. This would provide evidence of the skill of their 
forecast products generally, which may be useful should a liability issue arise, but could also 
help to scale their customers’ expectations about the accuracies and uncertainties of the 
products and services that they are purchasing. Third, the company ’s services agreement 
should clearly warn customers that forecasting is not a precise science. While these measures 
will help to avoid lawsuits in the first place, lawsuits may still be filed. Consequently, liability 
insurance makes sense.” 

 

2.7 Demands on forecasting models 

Schwartz and Brower [122] interviewed schedulers, research planners, dispatcher and energy 
planners at seven US utilities and asked for their needs in a wind energy forecast. Among the 
most needed was a day-ahead forecast, to be given in the morning for the unit commitment 
schedule and energy trading for the following day. Hourly forecasts, expressed in likely MW and 
with error bars, were another wish. However, one important result was that if good tools were 
available, operators in utilities with enough penetration would use these tools. This is also our 
experience with operators from Danish utilities. 

The Irish TSO gave the following list of demands [70]: 
• “Forecasts should be available for individual windfarms and groups of wind farms. 
• Forecasts should be wind power output, in MW, rather than wind speed, 
• hourly forecasts extending out to a forecast horizon of at least 48 hours, 
• an accurate forecast with an associated confidence level (dispatchers would tend to be 

more conservative when dealing with larger forecast uncertainties), 
• a reliable forecast of likely changes in wind power production and 
• a better understanding of the meteorological conditions which would lead to the 

forecasts being poor. 
• Use of historical data to improve accuracy of forecast over time - the method for doing 

this needs to be built into the program.” 

In Norway [49], a questionnaire sent to Norwegian wind energy producers and visits to a few of 
the larger energy companies revealed the following five points: 

• “The forecasts should be available early in the morning (before 08:00) in order to give 
time for considertion of the forecast before trading at noon. 

• Wind power production should be predicted hourly, uncertainty intervals should also be 
given. 

• Forecasts up to +36 h length are desirable. 
• Updated forecasts in the afternoon based on production data. 
• Forecasts several days ahead are ueful for planning of maintenance.” 
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3. The ANEMOS project 

The ANEMOS project (“Development of a Next Generation Wind Resource Forecasting System for 
the Large-Scale Integration of Onshore and Offshore Wind Farms”) is a 4 years R&D project that 
started in October 2002. It is funded by the European Commission under the 5th Framework 
Programme (ENK5-CT-2002-00665). A number of 22 partners participate from 7 countries 
including research institutes, universities, industrial companies, utilities, TSOs, and agencies.    

 

IASAIASAIASA

 

Figure 5: The consortium of the Anemos project (from http://anemos.cma.fr/). 

The aim of the project is to develop advanced forecasting models that will substantially 
outperform current methods. Emphasis is given to situations like complex terrain, extreme 
weather conditions, as well as to offshore prediction for which no specific tools currently exist. 
The prediction models are implemented in a software platform and installed for online operation 
at onshore and offshore wind farms by the end-users participating in the project. The project 
demonstrates the economic and technical benefits from accurate wind prediction at different 
levels: national, regional or at single wind farm level and for time horizons ranging from minutes 
up to several days ahead.  

Initially, the prediction requirements are defined in collaboration with end-users. Research on 
physical models gives emphasis to techniques for use in complex terrain and the development 
of prediction tools based on CFD techniques, advanced model output statistics or high-
resolution meteorological information. Statistical models are developed for downscaling, power 
curve representation, upscaling for prediction at regional or national level, etc. A benchmarking 
process is set-up to evaluate the performance of the developed models and to compare them 
with existing ones using a number of case studies. The synergy between statistical and physical 
approaches is examined, together with the performance of purely meteorological forecasts. 

Appropriate physical and statistical prediction models are also developed for offshore wind farms 
taking into account advances in marine meteorology (interaction between wind and waves, 
coastal effects). The benefits from the use of satellite radar images for modelling local weather 
patterns are investigated.  

A next generation forecasting software, ANEMOS, is developed to integrate the various models. 
The tool is enhanced by advanced ICT functionality and can operate both in stand alone, or 
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remote mode, or can be interfaced with standard EMS/DMS systems. The software will be 
installed for on-line operation at a number of onshore and offshore wind farms. Finally, the 
benefits from wind prediction will be evaluated during on-line operation, while guidelines will be 
produced for the optimal use of wind forecasting systems.  

This report has actually been prepared as a Deliverable (D1.1) in the project. Additionally, a 
questionnaire was circulated to project partners, requesting details of their current wind 
forecasting models. The information to be supplied in the questionnaire included a short 
description of the model and its operational status and details of on-line data and numerical 
weather prediction requirements, prediction time resolution and horizon, and methods of 
downscaling, statistical post-processing (MOS), and upscaling.  

Details of the questionnaire responses are summarized in the Annex of D1.1 Deliverable.  

The institutes and corresponding models for which questionnaire responses were received are 
as follows: 

Institute Model name 
Risø Prediktor 
ARMINES/RAL More Care 
Uni Oldenburg Previento 
IASA/AMWFG SKIRON and RAMS 
CENER LocalPred-RegioPred 
Uni Carlos III SIPREOLICO 
IMM/DTU WPPT 
ARMINES AWPPS 

 

An overview of operational models is given in the following table. 
 

PREDICTION MODEL DEVELOPER METHOD OPERATIONAL STATUS 
OPERATIONAL 

SINCE 

Prediktor Risø Physical Spain, Denmark, Ireland, 
Germany, (US) 

1994 

WPPT IMM; University of Copenhagen Statistical ≈1GW, 
Denmark (E & W) 

1994 

Zephyr, Combination 
of WPPT and 
Prediktor 

Risø and IMM 
Physical, 
Statistical - - 

Previento University of Oldenburg, Germany Physical - - 

AWPPS (More-Care) Armines/Ecole des Mines de Paris Statistical, 
Fuzzy-ANN 

Ireland, Crete, Madeira 1998, 2002 

RAL (More-Care) RAL Statistical Ireland - 

SIPREÓLICO University Carlos III, Madrid  
Red Eléctrica de España 

Statistical ≈ 4 GW, Spain 2002 

LocalPred-RegioPred CENER Physical La Muela, Soria, Alaiz 2001 

HIRPOM University College Cork, Ireland 
Danish Meteorological Institute 

Physical Under development - 

AWPT ISET Statistical, 
ANN 

≈ 10 GW, Germany - 
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4. Concluding remarks 

 

Short-term forecasting has come a long way since the first attempts at it. Often, running the grid 
would not be possible without it, in situations with more than 100% instananeous power from 
wind in the grid. The current crop of models, typically combining physical and statistical 
reasoning, are fairly good, although the accuracy is limited by the employed NWP model. 

Short-term prediction consists of many steps. For a forecasting horizon of more than 6 hours 
ahead, it starts with a NWP model. Further steps are the downscaling of the NWP model results 
to the site, the conversion of the local wind speed to power, and the upscaling from the single 
wind farms power to a whole region. On all these fronts, improvements have happened since the 
first models. Typical numbers in accuracy are an RMSE of about 10-15% of the installed wind 
power capacity for a 36 hour horizon.  

The main error in a short-term forecasting model stems from the NWP model. One current 
Ansatz to overcome this error source, and to give an estimate of the uncertainty of one particular 
forecast, is to use ensembles of models, either by using multiple NWP models or by using 
different initial conditions within those. Research work carried out in Anemos project aims to 
evaluate the performance of alternative NWP forecasts, including high-resolution ones, on a 
number of specific wind farms. 
 

Noteworthy is the current explosion in working models. During the early nineties, Prediktor and 
WPPT were nearly alone on the market. In the second half of the nineties, the commercialisation 
of wind power forecasting began, by Risø and IMM/DTU, but also by dedicated companies like 
TrueWind. More players were coming into the field, such as Armines/Ecoles des Mines de Paris 
and RAL with the MoreCare project, Oldenburg with the Previento model, the ISET cornering the 
German market, and others. But since just before 2000 there were suddenly a whole lot more 
models coming from Europe and beyond. Spain developed an interest, and started to use the 
Sipreolico model, while for the moment relegating LocalPred/RegioPred to research status. 
France is looking at forecasting options now. Ireland has started in the last years, adapting 
existing models and developing new ones in Cork University. ECN has scored their first contract 
in the Netherlands. In the recent European Wind Energy Conference in Madrid (June 2003), 
more than 30 papers were presented, including a number of new models. 

Additionally, some of the traditional power companies have shown interest in the field, like 
Siemens, ABB or Alstom. This could start the trend to treating short-term prediction models as a 
commodity to be integrated in energy management systems or wind farm control and SCADA 
systems. Information and communication technology is expected to play a major role for 
integrating wind power prediction tools in the market infrastructure. 
 

Wind power prediction software is not “plug-and-play” since it is always site-dependent. In order 
to run with acceptable accuracy when installed to a new site, it is always necessary to devote 
considerable effort for tuning the models (in an off-line mode) on the characteristics of the local 
wind profile or on describing the environment of the wind farms. It is here where the experience 
of the installing institute makes the largest difference. Due to the differences in the existing 
applications (flat, complex terrain, offshore) it is difficult to compare prediction systems based on 
available results. An evaluation of prediction systems needs however to take into account their 
robustness under operational conditions and other factors.   

Despite the appearance of multiple similar approaches today, further research is developed in 
several areas to further improve the accuracy of the models but also to assess the uncertainty of 
the predictions. Combination of approaches is identified as a promising area. The feedback from 
existing on-line applications continues to lead to further improvements of the state-of-the-art 
prediction systems.   



ANEMOS ANEMOS_D1.1_ StateOfTheArt _v1.1.pdf, 2003.08.12.   

Deliverable D1.1 26/36

The aim of the present report is to contribute to the current research on wind power forecasting 
though a thorough review of the work developed in the area in the last decades. Wind power 
forecasting is a multidisciplinary area requiring skills from meteorology, applied mathematics, 
artificial intelligence, energetic, software engineering, information technology and others. It 
appears as an emerging technology today, with leaders from the European Union Institutes. This 
has been the result of an early recognition by the EU, as well as the pioneer countries in wind 
energy, of the necessity to anticipate efficient solutions for an economic and secure large-scale 
integration of wind power. The expectations from short-term wind power forecasting today are 
high since it is recognised as the means to allow wind power to compete on equal footing with 
the more traditional energy sources in a competitive electricity marketplace.   
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6. Glossary 
a.g.l. Above ground level 

ANN: Artificial Neural Network 

ARMINES: Joint Research Unit with Ecole des Mines de Paris. 

CLRC: Council for the Central Laboratory of the Research Councils, UK 

DMI: Danish Meteorological Institute 

DMS:  Distribution Management System. 

DTU: Technical University of Denmark 

DWD: Deutscher Wetterdienst (German Weather Service) 

ECMWF: European Centre for Medium Range Weather Forecasts, Reading, UK 

EMS:  Energy Management System 

EPS: (The ECMWF) Ensemble Prediction System 

ESP:  Energy Service Provider 

HIRLAM: High Resolution Limited Area Model, a NWP model developed by the met. 
Institutes of Denmark, France, Norway, Finland, Spain, and Ireland 

Horizon: The look-ahead time, sometimes used for the maximum a NWP can deliver 

IMM: Informatics and Mathematical Modelling at DTU, Lyngby, Denmark 

IPP:  Independent Power Producer 

LM: Lokalmodell (the current NWP model of the DWD) 

MAE:  Mean Absolute Error 
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MM5: Mesoscale Model 5, a popular mesoscale code developed at Pennsylvania State 
University and NCAR 

MOS: Model Output Statistics, a means to remove residual error 

NCEP/NCAR: National Center for Environmental Protection / National Center for Atmospheric 
Research, Golden, Colorado, US 

NWP:  Numerical Weather Prediction, usually run by meteorological institutes 

Persistence: Simple prediction method assuming that the wind production in the future will be 
the same as now.  

Prediktor: Short-term prediction system developed by Risø National Laboratory, Denmark 

Previento: Short-term prediction system developed by University of Oldenburg, Germany 

PSO:  
Power System Operator. In Denmark PSO stands for Public Service Obligation, 
a statute under which some money is collected from the electricity bills and used 
towards strengthening the network (including research) 

RAL: Rutherford Appleton Laboratory, Didcot, UK. Part of CLRC. 

RLS: Recursive Least Squares 

RMSE: Root Mean Square Error 

SCADA: Supervisory Control and Data Acquisition 

Sipreólico: Short-term prediction system developed by University Carlos III, Madrid, Spain 

TSO:  Transmission System Operator 

WPPT:  Wind Power Prediction Tool, the forecasting system developed at IMM (DTU) 

Zephyr: The new short-term prediction tool merging WPPT and Prediktor 
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