

Short-term Forecasting Using Advanced Statistical Models

Torben Skov Nielsen, Technical University of Denmark, Denmark tsn@imm.dtu.dk

European Wind Energy Conference Athens, 27 Feb. – 2 Mar. 2006.

Research priorities

Downscaling of NWP data to local conditions

- Power curve modeling
- Prediction of local power or wind speed
- Assessment of the prediction uncertainty: interval forecasts and prediction risk indices
- Regional upscaling of power predictions
- Automatic processes for online tuning

Statistical downscaling of NWP data

Sotavento test case

- Downscaling (MOS) reduces forecast errors significantly, especially in complex terrain
- Methods with and without measured wind data have been developed
- Methods are based on principal components analysis on surrounding NWP grid points

Alaiz test case

Ensemble forecasts and risk indices for assessing prediction uncertainty

Risk indices based on ensembles provide information on the wind power predictability for the next 24 hours.

 Value for developing advanced strategies in decision making processes (i.e. trading, reserves definition)

- Statistical modeling solutions for all links in the model chain from area average NWP over local predictions to regional power predictions have been developed.
- Each link in the statistical modeling chain performs equally well or better than other modeling approaches.
- Appropriate models are provided for uncertainty estimation.
- The model solutions are being made available for operational use within the ANEMOS shell.