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1. Abstract 
Power curve modeling from wind speed, wind direction and power output 
measurements allows forecast wind farms power once the prediction of wind speed 
and direction has been made. Therefore it is important to obtain a reliable empirical 
dependence between these variables. 
In this paper, a comparison of five different methods based on statistical tools is 
presented. The methods are conditioned to the availability of data and are named as 
follows: 

a) Global power curve referred to meteorological mast 
b) Global power curve referred to nacelle anemometers  
c) Cluster power curves referred to nacelle anemometers 
d) Turbine power curves referred to nacelle anemometers 
e) Fuzzy logic power curves 

The comparison is made for a validation period so that two parameters are used to 
evaluate the prediction of output power: 

1) Determination coefficient  )( 2R

2) Root mean square error (rms) 
A substantial improvement is observed over the evaluation parameters as the models 
are more accurate and take into account more effects (models a. to e.) 
 

2. Introduction 
Wind power forecasting tools are becoming helpful especially in countries with an 
important wind energy installed power. Prediction tools can make wind energy be 
competitive with other energy sources in a liberalized energy market context. 
Deviations between scheduled and real production have always a penalty which is in 
most cases an important obstacle for wind energy producers in order to access to the 
energy market.  
A significant aspect is related to the efficient use of electrical networks. Prediction 
tools are very useful in areas characterised by a high concentration of wind farms and 
a limited capacity of network. The load at a certain node can be optimised by an 
operator by means of this type of tools, minimizing the losses of energy. 
That’s why the accuracy of predictions is a critical point that determines the value of 
forecasts. The most of Spanish wind farms are located in complex terrain where wind 
forecast is normally more difficult than in flat areas mainly due to terrain local effects 
(topographical and thermal) that modify wind flow.  
One way for predicting a wind farm power would be forecast wind speed and direction 
through a numerical weather prediction (NWP) model and convert them into a 
production value by means of a wind farm power curve. However, these NWP models 
are limited by their grid scale so that effects with a characteristic dimension (spatial 
and temporal) smaller than this resolution cannot be solved explicitly. These 
circumstances recommend adding other techniques in complex terrain areas in order 
to decrease prediction errors such as high resolution physical modelization, statistical 
downscaling, power time series, etc. 
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CENER prediction model comprises all these facilities and gives a solution to power 
prediction at different levels. 
Input data to the model consist of numerical predictions given by a global or regional 
model and local measurements (wind speed, wind direction, air temperature, air 
pressure and power production) at a meteorological mast located in the wind farm. A 
mesoscale meteorological model (MM5) uses the outputs of a global or regional model 
as initial and boundary conditions and generates high resolution wind forecasts in the 
area of the wind farm with a 1x1 resolution. The CFD module reads the MM5 
forecasts at the nodes over the grid and performs a simulation of wind flow with a 
spatial resolution of meters. 

2km

An advanced Model Output Statistics module (MOS) improves more wind forecasts 
detecting and removing the systematic errors through a powerful statistical process 
based on historical wind predictions and simultaneous meteorological mast data.  
Wind forecasts are finally transformed into power forecasts through the wind farm 
power curve module, which is specially analyzed in this paper. 
The time series module generates in parallel an independent forecast based on wind 
and power measurements of the wind farm. This module reduces the errors for the 
first hours taking advantage of the persistence of the wind. Figure 1 shows CENER 
prediction model structure. 
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Figure 1 CENER prediction model structure 

 
Another application of the developed wind farm power curve models is to characterize 
the performance of a wind farm or a wind turbine being possible to detect variations in 
the power curve with a high degree of precision. 

 
3. Power curve modeling 
3.1 General features 
Power curve modeling allows predict wind farm power for a predicted wind speed and 
direction. This modeling has been carried out by means of different methods based on 
statistical tools. Except for the last one, all the methods obtain as a result a matrix-
shaped power curve in which the mean output power is obtained entering a certain 
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wind direction and wind speed. The use of each method is conditioned to the 
availability of data (historical data of wind speed, wind direction and wind farm output 
power) so that the more data are available, the more accurate the results are. All the 
methods have a tunning period during which they are fitted and a checking period for 
validating them.  
The study used the same tunning and validation period so that one or more power 
curves were obtained during the tunning period (Jan01-Aug01) and applied for the 
validation period (Sep01-Dic01). As these periods were conditioned to the availability 
of data, they changed in some cases. The number of wind speed bins and sectors for 
the definitive power curve was optimised during the first modeling.  
The data used in the analysis belong to Alaiz wind farm located in Navarra, at the 
North-East of Spain. The terrain in the area is classified as complex (figure 2) with 
steep slopes and considerable changes on altitude. Alaiz wind farm is formed by 50 
turbines (660 kW rated power) installed on the top of a hill with an average height 
above sea level of 1050 meters. 
 

 

 
 

Figure 2 Alaiz wind farm area 

 
In order to avoid the effect of air density over the measurements, all wind speed and 
output power data were corrected by means of atmospheric pressure and air 
temperature. This correction was made according to IEC 61400-12 depending on the 
power control (pitch controlled: correction over wind speed or stall regulated: 
correction over output power). Taking into account that the turbines installed in Alaiz 
are pitch regulated, a normalised wind speed was calculated for a standard density of 
1.225 kg/m3.  
Three parameters were used to evaluate power prediction during the validation period: 
1) Determination coefficient (R2) 
2) Root mean square error (rmse) 
3) Relative error to the wind farm nominal installed power 

 

3.2  Linear models. Binning methods 
Binning methods consist of discretizing wind speed and wind direction data measured 
at the mast into speed bins and direction sectors so that a mean output power is 
obtained for each corresponding speed bin and direction sector. 
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The bin width and the number of sectors were optimised in the analysis for a bin width 
of 0.5 m/s and 16 sectors. The result is a power curve (output power vs wind speed) 
for each sector and a global power curve. 
 
• Model 1: Global power curve referred to meteorological mast  

 
This model compares directly the global wind farm power to the normalised wind 
speed measured at the met mast. All the measurements were filtered and singular 
points ignored in the analysis. A discretization for different number of sectors (4, 6, 
8, 12 and 16) and bin widths (0.5 and 1 m/s) was made so that optimum results 
were obtained indeed for 16 sectors and a bin width of 0.5 m/s, as it was expected.  
There were not available data for air pressure and air temperature during Jun01 so 
this month could not be included in the tunning period for this model and for the 
subsequent ones.  
As it was said before, a global power curve in a matrix form (sectors in rows-wind 
speed bins in columns) was obtained using the specified training period and taking 
a mean value for the wind farm power corresponding to each sector and wind 
speed bin. This power curve was applied for the validation period (Sep01-Dic01) 
and a simulated power was obtained. Figure 3 shows the comparison between this 
simulated power and the measured one. 
 

MODEL 1: ALAIZ WIND FARM POWER CURVE REFERRED TO THE METEOROLOGICAL MAST
Validation period (01/09/2003 - 31/12/2003)
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Figure 3  Modelled and real power curves during the validation period for MODEL 1  

 
 
• Model 2: Global power curve referred to nacelle anemometers  

 
This second model uses wind speed measured at the nacelle anemometers 
assuming this is a more representative measurement around the area. 
Unfortunately, these speeds were not measured in Alaiz since Jun01 until 13Dic01 
so that the validation period was reduced to the 2nd half of December 2001. The 
available nacelle wind speeds were filtered and an only wind speed series 
averaged for all the turbines was obtained. This series was synchronized again to 
wind direction at the met mast and to global output power.  
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The resulting power curve obtained during the tunning period was again applied 
during this second validation period so that the simulated power was compared to 
the measured one.  

MODEL 2: ALAIZ WIND FARM POWER CURVE REFERRED TO THE NACELLE ANEMOMETERS
Validation period (13/12/2001-31/12/2001)
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Figure 4  Modelled and real power curves during the validation period for MODEL 2  

 

• Model 3: Cluster analysis to determine subsets of wind turbines. Cluster power 
curves referred to nacelle anemometers 

Once tested that nacelle anemometers gave better results, a new method was 
employed in order to adjust different power curves to different turbine subsets. 
These subsets were arranged by means of a cluster analysis applied to the 
turbines power data so that a group of turbines was obtained attending to 
production homogeneities criteria. 
According to the dendrogram in figure 5, five turbines subsets could be obtained 
after filtering output power data and applying a cluster analysis based on a 
hierarchical clustering and complete links (maximum distances between groups). 
From this point, a similar method to the explained above was carried out so that 
five different power curves were developed from averaged nacelle wind speeds 
corrected by density, wind direction measured at the met mast and cluster output 
power. These curves were applied during the validation period in order to get an 
output predicted power for each cluster. By adding these cluster productions, a 
global wind predicted power was obtained and compared to real data (figure 6).  
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Figure 5 Cluster analysis dendrogram  

MODEL 3: CLUSTERS POWER CURVES REFERRED TO NACELLE ANEMOMETERS
Validation period (13/12/2001-31/12/2001)
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Figure 6  Modelled and real power curves during the validation period for MODEL 3 

 
• Model 4: Turbine power curves referred to nacelle anemometers 

 
An extreme case derived from the model before consists of obtaining different 
power curves for every turbine instead of making groups and applying the same 
process as explained above. Therefore, this modified-model 3 uses as inputs 
normalised nacelle wind speed, meteorological mast wind direction and turbine 
output power. Once filtered, these measurements allowed obtain a power curve 
for each turbine, which was applied later over the validation period. The output 
power for this period was added for all the turbines in order to get the global wind 
farm power and was compared to real output power. 
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MODEL 4: ALAIZ WIND FARM POWER CURVE FROM TURBINE POWER CURVES
Validation period (13/12/2003-28/12/2003)
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Figure 7  Modelled and real power curves during the validation period for MODEL 4  

 
3.3 Non-linear models: fuzzy logic power curves referred to nacelle 
anemometers 

 
Fuzzy logic statistical tool defines input variables (normalised wind speed, wind 
direction and optionally other variables like air pressure and air temperature) and an 
output variable (wind farm power) by means of membership functions and finds proper 
transfer functions for relating them. Like in the models before, fuzzy logic method fits 
these functions for a tunning period attending to minimum rms criteria over another 
validation period. Once tunned, these transfer functions are applied during the 
validation period giving as result a simulated power which is again compared to real 
power.  
Several iterations are needed to get the optimal fitting so that there are a critical 
number of them from which an improvement in terms of rms is not observed (see 
figure 8.a). As it can be observed, rms between modelled and real power is minimum 
at approximately 80 iterations. From this point, rms fluctuates considerably around 600 
kW approximately. 
Fuzzy logic model was applied over two groups of data: 
1) Wind farm data: averaged nacelle wind speed, meteorological mast wind direction 

and wind farm power. An only power curve was obtained for this case (see figures 
8 and 9). 

2) Wind turbine data: turbine nacelle wind speeds, met mast wind direction and wind 
turbine power. Fuzzy logic was applied separately to every turbine to get different 
power curves so that a different turbine power curve was simulated during the 
validation period. 

Figure 8 also shows the time evolution for the modelled and measured power as well 
as their corresponding power curves during the validation period. Tunning for both 
series is acceptable and big discrepancies were not detected. 
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Figure 8  a. Evolution of rms with the number of iterations   b. Predicted power vs measured power during the validation period  c. 

Modelled power curve vs real power curve during the validation period 
 

 
Figure 9  Tranfer functions between wind speed-wind direction and output power  

 
 
4. Results 
The table on the next page shows the results obtained for all the models as for R2 and 
rms always between modelled and real power during the validation period as 
well as the tunning and the validation period used for everyone. The results 
corresponding to the fuzzy logic model are separated for both groups of data 
explained above. 
Model 1 afforded an rms of 2863 kW (8.65% of the nominal installed wind farm power) 
and a determination coefficient of 0.947. The best improvement was observed 
between model 1 and 2 when nacelles anemometers wind speeds were used getting a 
decrease in rms from 2863 to 851 kW and resulting in a 2.68% of the nominal power.  
From this point, small improvements were observed for model 3 and 4 by making the 
analysis with groups of turbines (cluster analysis) or even with each wind turbine, 
getting as much a production rms of 1.91%. 
Similar results to the ones in model 3 were achieved for the fuzzy logic tool applied 
over the wind farm with a minimum production rms of 696.24 kW (2.19% of the 
nominal power). 
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The best results were obtained when the fuzzy logic tool and the tunning over the 
transfer functions were applied for each wind turbine. This method afforded for 300 
iterations a rms of 496.43 kW (1.53% of the nominal power) and a R2 value of 0.9989.  

 
Model Nr. Training period Validation period R2 rms (kW) rms / Nominal 

Power (%) 

1  Jan01-May01 
Jul01-Sep01 Oct01-Dic01 0.947 2863 8.65 

2  Jan01-May01 2nd half Dic01 0.995 851 2.68 
3  Jan01-May01 2nd half Dic01 0.996 673 2.11 
4  Jan01-May01 2nd half Dic01 0.996 632 1.91 

 
 

 
 
 
 

Model Nr. Training period Validation period Nr iterations R2 rms (kW) rms / Nominal 
Power (%) 

5 0.9979 777.96 2.44 
20 0.9980 762.38 2.40 
70 0.9982 728.05 2.29 

100 0.9984 701.76 2.21 
200 0.9984 696.24 2.19 

Wind 
farm Jan01-May01 2nd half Dic01 

300 0.9984 696.24 2.19 
5 0.9982 565.73 1.78 

20 0.9982 566.43 1.78 
100 0.9989 495.85 1.56 
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Wind 
turbine Jan01-May01 2nd half Dic01 

300 0.9989 486.43 1.53 
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