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Abstract 
 

An outstanding question posed today by end-users like power system operators, wind power producers or traders is 

what performance can be expected by state-of-the-art wind power prediction models. This paper presents results of 

the first ever intercomparison of a number of advanced prediction systems performed in the frame of the European 

project Anemos. A framework for error characterization has been developed consisting by a measure- and a 

distribution-oriented approach. This comparison has given a perspective of the possibilities and limitations of the 

forecasts in the different test cases that were defined. At a second stage, the homogenous comparison process has 

permitted to evaluate the possibility of obtaining better performance by exploiting the merits of individual models 

through model combination. The paper presents the methodology and results from the combination approach. 

 

 
 

 

1. Introduction  

 
The European project Anemos [1] has developed a 

wide research on several topics related to wind power 

forecasting such as physical and statistical modeling, 

uncertainty estimation, upscaling and others. From a 

very first stage of the project it was recognized by 

both end-users and modelers the necessity to map the 

existing wind power forecasting technology both in 

terms of research approaches and also in terms of 

performances. Initially an extensive literature review 

was developed and reported in [4].  

 

Then, a comparison of a number of state of the art 

prediction models has been carried out in order to 

know what are the possibilities of the forecasting 

models under different situations. This comparison 

has given a perspective of the possibilities and 

limitations of the forecasts in the different test cases 

that were defined. This is the first comparison of wind 

power prediction models that is made at European 

level; the results are valuable information for the 

potential users of the prediction models about the 

typical ranges of error level, and the relation of the 

accuracy with the wind farm characteristics.  

 

It is shown that the accuracy of power production 

forecasts as well as wind speed forecasts depends on 

the features of the wind farm as well as on the 

prediction model. This intercomparison exercise has 

been designed to cover different types of wind farms 

and state of the art forecasting models, therefore the 

results are a valid reference of the analysed prediction 

models performance for the final users. The test cases 

defined include complex terrain and relatively flat 

areas to take into account the effects of the 

topography; distance to the shore, different altitudes 

and climatic conditions. 

 

A database has been developed including wind 

measurements, power production, and other 

meteorological data; numerical weather predictions 

were also included as well as the characteristics of the 

wind farm for each test case (power curves, digital 

maps of the terrain and roughness, etc). This database 

has provided all the necessary data for each model. 

 

From the point of view of the prediction models, this 

exercise covers a wide variety of technical 

approaches, from autoregressive models to fuzzy 

logic neural networks, including MOS systems and 

boundary layer physical models. A number of "base-

line" models were run for the test cases, such as 

Prediktor, WPPT, Previento, Sipreolico, CENER’s 

LocalPred, the Armines AWPPS, RAL's model, 

ARIA wind, and NTUA's. Most of these systems are 

operational today and used by system operators or in 

market trading in Spain, Germany, Denmark, Ireland 

and Greece. 

 

Apart from the power prediction models, the exercise 

was also extended to the comparison of numerical 

weather predictions from different systems. Detailed 

results of this task are presented in [2].  

 

In order to be able to compare results by different 

models for the various test cases an appropriate 
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framework was defined characterized by a measure-

oriented approach and a distribution approach for 

characterizing the deviations of the forecasts in 

relation to the measurements. The measure-oriented 

approach gathers a set of statistical error measures in 

the form of an “evaluation protocol” defined in [6].  

Using this protocol one can derive conclusions on the 

performance of prediction methods and on what 

affects this performance (terrain, season, horizon etc). 

 

The distribution-oriented approach aims to focus on 

the analysis of the joint distributions of predictions 

and observations. It investigates the influence of 

certain variables (i.e. level of predicted power, speed, 

a.o.) on the moments of error distributions (from the 

bias to kurtosis). This analysis is valuable to 

characterize prediction errors and relate weaknesses 

of models to specific causes. In this sense, it is a 

prerequisite for identifying areas of model 

improvement. Detailed results are presented in [12]. 

 

Finally, the homogenous comparison process has 

permitted to evaluate the possibility of obtaining 

better performance by exploiting the merits of 

individual models through model combination. The 

paper presents the methodology and results from the 

combination approach. 

  

 

2. Selected wind farms 
 

 The objective of the benchmark was to study the 

performance of the prediction models under typical 

wind farm locations. Six test cases were selected to 

cover a wide range of conditions with respect to 

climatology and terrain and are located in four 

different countries: 
 

• Wusterhusen wind farm in Germany (flat terrain), 

• Alaiz (very complex terrain) and Sotavento 

(complex terrain) wind farms in Spain, 

• Klim (flat terrain) and Tunø (offshore) wind 

farms in Denmark, 

• Golagh wind farm in Ireland (complex terrain). 

 

For the benchmarking 11 state of the art power 

prediction models [4] have been tested in the selected 

wind farms. In order to ensure that every prediction 

model run under the same conditions, a common 

database was created for each wind farm. Databases 

include datasets of wind and power measurements, as 

well NWP and all the necessary information about 

each wind farm (digital terrain maps with elevation 

and roughness, wind farm layout, wind turbine power 

and thrust curves). 

The following NWP model outputs were used as 

inputs for the power prediction models: 
 

• High Resolution Limited Area model 

(HIRLAM): 

o 0.2º grid resolution in Spain. The forecasts 

are updated four times a day with a lead-time 

of 24 hours. 

o 0.15º grid resolution in Denmark and Ireland. 

The forecasts are updated four times a day 

with a lead-time of 48 hours. 

• Deutschland-Modell (DM) 0.15º grid resolution 

in Germany. The forecasts are updated once a day 

with a lead-time of 72 hours. 
 

Test case Classification 

Training 

period 

Validation 

period 

Nominal 

power 

[MW] 

Tunoknob Offshore 

Mar 2002 

 Dec 2002 

Dec 2002 

 Apr 2003 5 

Klim Flat 

Jan 1999 

 Feb 2001 

Mar 2001 

 Apr 2003 21 

Wusterhusen Flat 

Jan 1999 

 Jun 2000 

Jul 2000 

 Dec 2000 1 

Golagh Complex 

Aug 2002 

 Jan 2003 

Feb 2003 

Mar 2003 15 

Sotavento Complex 

May 2001 

 Aug 2001 

Sep 2001 

 Nov 2001 17.56 

Alaiz Very complex 

Jan 2001  

 Aug 2001 

Sep 2001 

 Dec 2001 31.77 

Table I: Characteristics of the wind farms selected as test 

cases. 

Selection of representative Selection of representative 

wind farmswind farms

OffshoreOffshore Flat terrainFlat terrain Complex terrainComplex terrain
Highly complex Highly complex 

terrainterrain

TunTunøø KnobKnob

(Denmark)(Denmark)
KlimKlim (Denmark)(Denmark)

WusterhusenWusterhusen (Germany)(Germany)
GolaghGolagh (Ireland)(Ireland)

SotaventoSotavento (Spain)(Spain)
AlaizAlaiz (Spain)(Spain)

 
 

Figure 1: Test cases in Spain, Ireland, Denmark and Germany. 
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Wusterhusen wind farm is placed in the 

northeastern part of Germany 20 km southeast of the 

town of Greifswald and 8 km from the shoreline of 

the Baltic Sea. The wind farm consists of 2 Nordtank 

NTK500/41 turbines with a total rated capacity of 1.0 

MW. The RIX value is 0 for this wind farm, meaning 

that no slope is higher that the reference value (30%). 
 

Sotavento wind farm is placed in Galicia region in 

the North Western part of Spain approximately 40 km 

from the coastline of the Atlantic Ocean. The site is 

located 600-700 m above sea level in semi-complex 

terrain. The wind farm is a testing site and consists of 

large number of different turbines with a rated 

capacity ranging from 600 kW to 1320 kW. The total 

rated capacity of the Sotavento wind farm is 17.56 

MW. The RIX value for this wind farm is 7. 
 

Alaiz wind farm is situated 15km south of Pamplona 

in the Navarra region of Spain in very complex terrain 

910 m – 1120 m above sea level. Alaiz is a large wind 

farm with a rated capacity of 33.09 MW distributed 

on 49 Gamesa G47-660 wind turbines and one 

Lagerwey LW750 turbine. The RIX value for this 

wind farm is 15. 
 

Klim wind farm is located in the northwestern part of 

Jutland approximately 8 km from the north coast and 

50 km west of the city of Aalborg. The wind farm 

consists of 35 Vestas V44 600 kW turbines with a 

total rated capacity of 21.0 MW. The RIX value for 

this wind farm is 0. 
 

Tunø Knob wind farm is situated offshore, 6km of 

the east coast of Jutland and 10km west of the island 

of Samsø. This is one of the first offshore wind farms 

in the world and consists of 10 Vestas V39 500 kW 

turbines with a total rated capacity of 5.0 MW. The 

RIX value for this wind farm is 0. 
 

Golagh wind farm is located in the northwestern part 

of Ireland (Donegal County) 370 m above sea level. 

The turbines are 25 Vestas V42 600 kW machines 

corresponding to a rated capacity of 15.0 MW. The 

RIX value for this wind farm is 7.3. 

 

 

3. Design a virtual laboratory for 

the benchmarking 
 

In order to compare the performance of the power 

prediction models a benchmarking structure was 

designed. The objective was to characterise the 

performance of the models under the same input 

conditions: 

• The different NWP and wind farm data were 

stored to a common database after conversion to 

a common format ("Depri") that was defined for 

this purpose.  

• A web secured service was set-up to manage the 

available files and the results. 

• Common NWPs were used for each test case. 

• Common wind farm measurements (power 

production, wind speed and direction in some 

cases). 

• A training period in the data set was defined for 

each test case in order to train those power 

prediction models that need it. 

• An independent testing period was defined for 

each test case. The results presented in this paper 

correspond to the testing period of the test cases. 

• A forecast error evaluation protocol was 

developed [6] for evaluating the performance of 

the prediction modes in a standardised way. 

 

In order to present homogeneous results, the 

following forecasts have been analyzed: 

• Predictions calculated at 00 UTC. 

• +12 hours forecasts horizons for the comparison 

of model performance. 

 

Figure 2 summarizes the structure of the 

benchmarking. This structure has acted as a "virtual 

laboratory" in the frame of the project.  

 

 

WWiinndd  ppoowweerr  ffoorreeccaassttiinngg  mmooddeellss  

NNWWPP  

WWiinndd  ffaarrmm    
mmeeaassuurreemmeennttss  

DDaattaabbaassee  

WWPPPPTT LLooccaallPPrreedd  PPrreeddiikkttoorr  AAWWPPPPSS  PPrreevviieennttoo  SSiipprreeóólliiccoo  RRAALLAARRIIAA 

FFoorreeccaasstt  eerrrroorr  eevvaalluuaattiioonn  pprroottooccooll  

CCoommppaarriissoonn  

NNTTUUAA  

TTrraaiinniinngg  

VVaalliiddaattiioonn  

 

Figure 2: Design a virtual laboratory for the 

benchmarking. 

4. Evaluation results 
 

This Section presents representative results of the 

benchmarking exercise from the Alaiz and Golagh 

test cases characterized by very complex and complex 

terrains respectively. Complete results are given in 

[2].  

The Alaiz test case is the one with higher terrain 

complexity, as indicated by the RIX value (15). This 

has been proven the most difficult wind farm to 

predict, with high values of the NMAE (Normalised 

Mean Square Error) criterion and high dispersion 

among the performances of the prediction models 
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(Figure 3). The scale of the errors is higher than 

common cases of complex terrain; it ranges from 20% 

to 35% for the different models and horizon 24. The 

determination coefficient R2 also presents a high 

dispersion and relatively low values for some of the 

prediction models.  
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Figure 3: NMAE and R2 for Alaiz test case. 
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Figure 4: NMAE and R2 for Golagh test case. 

The NMAE values for Golagh wind farm are less 

dependent on the forecast horizon than for the other 

sites. The range of variation of NMAE for 24 hours 

horizon is 10% - 16%, being comparable for longer 

forecast horizons. Similar behavior can be seen for R2 

values (Figure 4).  

 

In general, it can be seen in the figures that for the 

first forecast horizons, those models with 

autoadaptivity capabilities show better results (lower 

NMAE and higher R2 values). This improvement is 

more evident in the first 6 hours. 

 

This study revealed both in a qualitative and 

quantitative way how performance of the prediction 

models is related to the complexity of the terrain. 

Figure 5 represents the variation of the average value 

of the NMAE for the 12 hours forecast horizon, for 

each test case. Figure 5 represents the performance of 

the studied power prediction models, showing the 

best, the worse and the average performance at each 

test case. It can be seen that there is a significant 

increase in the NMAE values as the complexity of the 

terrain increases (higher RIX values). The offshore 

wind farm (Tunø) has slightly higher values of 

NMAE but similar to the ones obtained for the flat 

terrain wind farms. 
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Figure 5: Average NMAE for 12 hours forecast horizon vs 

RIX at each test case. Qualitative comparison. 
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Figure 6: Average NMAE for 12 hours forecast horizon vs 

RIX at each test case ordered by RIX value. Qualitative 

comparison. 
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5. Distribution-oriented evaluation. 
 

In a second stage a distribution-oriented approach for 

forecast verification was developed for highlighting 

the characteristics of forecast uncertainty. This 

approach is based on the notion that it is the joint 

distribution of forecasts 
^

p  and observations p, ( )ppq ,ˆ  

which contains all the non-time-dependent 

information about a prediction method’s quality [8]. 

Such a distribution-oriented approach is also known 

as the Murphy-Winkler verification framework. 

While it is rather hard to directly study this joint 

distribution, one can instead focus on the various 

conditional and marginal distributions for deriving the 

necessary conclusions on the joint distribution 

properties. These various distributions include the 

conditional distributions of the observations given the 

forecasts ( )ppq ˆ , the conditional distributions of the 

forecasts given the observations ( )ppq ˆ , the marginal 

distribution of the observations ( )pq  and finally the 

marginal distribution of the forecasts ( )pq ˆ . For all the 

various aspects of forecast quality and the way they 

can be assessed from the analysis of these 

distributions, we refer to [9]. Some of these aspects 

will be mentioned throughout the present paper. 

 

Following a distribution-oriented approach, we have 

applied in the frame of the benchmarking exercise of 

the Anemos project a methodology consisting in 

studying the influence of a given variable (e.g. 

predicted power) on the moments of prediction error 

distributions (from the first to fourth order). Denote 

by tkte /+  the prediction error related to the power 

prediction 
tkt

p /

^

+
 made at time t for lead time t+k. This 

is because these moments correspond to different 

characteristics of prediction errors: 

• The mean e
kµ  locates the ‘center of gravity’ of a 

distribution and provides information on the 

systematic part of the error. It is given by the 

bias, as defined in [3]. 

• The standard deviation e
kσ  reflects the dispersion 

of a distribution, thus telling on the level of 

prediction uncertainty. It is given by the 

Normalized Standard Deviation of the Errors 

(NSDE) as defined in [10]. 

• The skewness e
kν  describes the lack of symmetry 

of a distribution. It gives the most likely direction 

of expected prediction errors. A distribution with 

an asymmetric tail extending out to the right is 

referred to as positively skewed. The skewness is 

often estimated following Fisher’s formula: 
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where TN  is the number of available 

prediction series in the evaluation set. 

• the excess kurtosis e
kκ  informs on the shape of a 

given distribution, compared to the shape of 

normal distributions. The excess kurtosis for a 

normal distribution is equal to zero. Then, a 

positive excess kurtosis translates to a sharper 

peak and heavier tails. This moment is estimated 

by: 
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Application of the distribution-oriented approach 

for highlighting the effect of the power curve. 

 

It is known that the contribution of the power curve to 

the power forecasting errors is to amplify or dampen 

wind speed prediction errors depending on the level 

of predicted wind speed. The power curve thus alters 

the shape of the wind speed error distributions. While 

previous studies [11] have only focused on the effect 

of the power curve on the general level of prediction 

error (expressed with measures), we want to go 

further here by basing our study on the distribution-

oriented approach introduced above for better 

showing how the level of predicted power impacts 

error characteristics. We concentrate on the Tunø 

Knob test case which consists in fact an illustrative 

example of the conclusions that were drawn from the 

whole evaluation study. The analysis is based on 536 

forecasts over a period of four and a half months.  

Wind power predictions are provided by 5 state-of-

the-art methods (denoted by M1, M2,…, M5), with 

HIRLAM meteorological forecasts as input. M1, M2 

and M3 are statistical prediction methods, while M4 

and M5 belong to the family of physical prediction 

approaches. 

 

A first investigation consists in studying the 

conditional distributions of the measures given the 

forecasts ( )ppq ˆ . This permits to assess the reliability 

of wind power forecasts [8]. Reliability is defined as 

the correspondence between the mean of the 

observations associated to a particular forecast and 

that forecast. It therefore translates to studying the 

dependence of the systematic error to the level of the 

predictand.  
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For this purpose, the range of forecast power values is 

split in 10% sub-ranges. In Figure 7, the normalized 

biases for the various prediction methods are given 

for each of the 10%-ranges of forecast values, for 18-

hour ahead prediction. This horizon is chosen 

randomly since we have not observed significant 

differences as a function of the horizon. We will also 

concentrate on that particular prediction horizon in the 

remaining of the paragraph, keeping in mind that 

derived conclusions can be generalized over the 

whole range of look-ahead times. Bias values exhibit 

significant variations over the range of possible 

predicted outcomes. These values are comprised 

between -7% and 9% of Pn, and seem to have a 

general trend to be positive in the lower part of the 

power curve and negative in its higher part.  

 

However, it does not appear possible to establish a 

clear relation between level of predicted power and 

prediction bias. Such behaviour has also been noticed 

for the other case-studies considered in the Anemos 

project with higher bias values for the wind farms 

located in semi-complex and complex terrain. 

 

In a general way, even if methods’ reliability is not 

perfect, we cannot identify a systematic lack of 

reliability in certain zones of the power curve or for a 

given method, apart from the trend we have expressed 

above. 

 
The next step is to evaluate what are the variations in 

the shape of error distributions depending on the 

predictand value. First, the nonlinear and bounded 

nature of the energy conversion process makes that 

the skewness of error distributions evolves with the 

level of predicted power. Figure 8 depicts this 

evolution. Distributions are positively skewed for low 

predicted values and then negatively skewed when 

these values are in the high part of the power curve. 

Moreover, the nonlinear process acts on both the 

spread and peakedness of error distributions. 

 

The spread dependence to the level of predicted 

power is shown in Figure 9, in which the spread is 

quantified by the standard deviation. Remember that 

the uncertainty of a given process is usually seen as 

the variability of its related observations. Then, 

studying the evolution of the spread of conditional 

distributions of the measures given the forecasts 

( )ppq ˆ  relates to evaluating the predictand-dependent 

uncertainty. In parallel, excess kurtosis, as a function 

of predicted power, is depicted in Figure 10. 

 

 

 

 

 

 

 

Figure 7: Normalized bias of the forecasting error 

distributions depending on the predicted power range. 

 

Figure 8: Skewness of the forecasting error distributions 

depending on the predicted power range 

 

  

Figure 9: Normalized standard deviation (quantified by 

the NSDE) of the forecasting error distributions depending 

on the predicted power range. 

 



 

 7 

 

Figure 10: Excess kurtosis of the forecasting error 

distributions depending on the predicted power range.  

 
High excess kurtosis values correspond to predicted 

power values close to minimum and maximum wind 

generation. Error distributions are highly peaked in 

these zones of the power curve. And, in the medium 

power range, slightly negative excess kurtosis values 

indicate that distributions are more flat than Gaussian 

distributions. At the same time, NSDE curves are 

almost symmetric with respect to the 50% power 

value. In the range of values related to the steep part 

of the power curve, the standard deviation is larger 

than for power values close to the power curve 

plateaus (say two or three times larger). Also, it can 

be seen that the standard deviations for these two 

plateaus are rather similar. The ratio between the 

uncertainty in the steep part of the power curve and 

the one in the low and high parts is approximately the 

same for all the prediction methods and the test cases 

considered in the full evaluation study, even if the 

shape of the standard deviation curves slightly differs 

from one test case to another. This tells us that the 

variations of the wind power forecasting uncertainty 

are similar whatever the wind farm and are in fact due 

to the wind-speed-to-power conversion process. 

Uncertainty levels may be higher when it is harder to 

predict wind speed (e.g. for complex terrain or 

offshore), but the way forecast uncertainty will vary 

as a function of the level of predicted power will be 

similar. 

 

6. Combination of forecasts 
 

It is not infrequent in wind energy to have access to 

more than one predictions of the wind farm 

production for the next hours. This has been the case 

in the Anemos project. In those cases, the adaptive 

combination of forecasts might be a useful 

methodology to generate an efficient single forecast. 

In this work, a new adaptive combination method, 

called AEC, is proposed. The method is called 

Adaptive Exponential Combination (AEC) and is 

similar to always using the best individual predictor.  

 

 

Figure 11: Example of individual prediction models 

(dotted lines) and the expected effect of error reduction by 

prediction combination in Golagh wind farm. Combination 

depends on forecast horizon. 

It is based on a two step combination methodology to 

combine a set of alternative predictions. This two step 

procedure aims to take the advantage of the different 

approaches of forecast combination. In the first step, 

several combination methods are used, being the AEC 

one of them. In the second step, the AEC method is 

used to combine the alternative combinations of the 

first step. The application to a real data set illustrates 

the usefulness of the proposed methods to obtain the 

best output from a set of alternative predictions. 
 

Two different types of combination approaches in 

a unified method 

 

There are many approaches in the literature to 

perform combination of forecasts. For convenience, 

here we will classify the alternative approaches into 

two main classes depending on the goal of the 

combination.  

 

The first class of combination methods will be 

denoted as combination for improvement. In this 

class, we target the best (constrained) linear 

combination of a set of forecasts. Methods to perform 

this combination for improvement can be based on the 

regression methodology, aimed at minimizing the 

residual variance of the linear combination. Ideally, 

the optimal linear combination would outperform the 

individual forecasts. In a practical situation, it is 

unclear how far we are of the ideal performance that 

can be obtained by combination. It is then possible 

that such combination is worse than some of the 

individual forecasts.  
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The second class of combination methods is called 

combination for adaptation. In this class we look for 

the combination that performs as well as the best 

individual procedure. This second class can then be 

interpreted as similar to a dynamic model selection, 

where the combination tends to put all the weigh to 

the best predictor, whenever it is clear that one of the 

predictors is the best one.  

 

 

Two-steps combination of forecasts 

 

In a practical situation we will not know in advance 

whether it would be better to use a combination for 

improvement method or, conversely, a combination 

for adaptation method. In order to benefit from both 

types of approaches we will apply them for wind 

energy forecast in a two step procedure. In a first step, 

we will apply alternative combination procedures 

based on the two mentioned approaches: one or more 

methods of adaptive combination for improvement, 

and also the AEC method of combining for 

adaptation.  

 

In a second step, we will treat these alternative 

combinations of the first stage as a new combination 

problem, and will combine them to obtain the final 

combination. In this second step we will not expect to 

improve over the combined predictions of the first 

step, but only to assure that the final combination is as 

good as the best of the competing combined 

predictions. Then, it is a combination for adaptation 

problem and only the AEC method will be used. We 

will refer to this practice as a two-steps combination 

of forecasts.  

 

Application to wind energy predictions 

 

We will compare the performance of different 

combination schemes applied to a set of alternative 

forecasts of hourly wind energy production. We have 

9 alternative series of forecasts produced with the 

prediction models tested in Anemos project, denoted 

as P1 to P9 as well as the time series of real 

observations for Golagh wind farm. The time span is 

three months, with a total of 2118 time periods. The 9 

forecasters have had the opportunity to build and train 

their respective methods using a large enough portion 

of older data from the wind farm.  

 

For the exercise, each hour the 9 forecasters had to 

supply predictions for the next 48 hours.  

 

Table II shows the root mean squared error (RMSE) 

normalised with nominal power of each forecaster for 

selected horizons. This table displays the minimum 

RMSE across the forecasters, and then the difference 

between the RMSE of each forecaster and the 

minimum. 

We can see from this table that the best predictor 

(bold numbers) is different at each horizon. As 

mentioned above, we perform a two-steps 

combination of forecasts. In a first step we combine 

the 9 competing forecast using the combination for 

improvement method (denoted as C1) and the 

combination for adaptation (AEC). In the second step, 

we combine these two combinations of forecasts of 

the first step using the AEC method. We will treat 

each prediction horizon as an independent 

combination problem. The results are displayed in 

Table III. The column of Minimum RMSE is the 

same as in the previous table. 

 

 

 Minimum Difference from minimum RMSE 

H RMSE P1 P2 P3 P4 P5 P6 P7 P8 P9 

1 0.036 0.125 0.054 0.102 0.000 0.054 0.110 0.131 0.139 0.053 

6 0.134 0.028 0.014 0.003 0.000 0.009 0.007 0.026 0.032 0.006 

12 0.153 0.028 0.008 0.000 0.000 0.001 0.003 0.020 0.023 0.000 

18 0.164 0.029 0.011 0.000 0.004 0.000 0.004 0.019 0.021 0.000 

24 0.171 0.030 0.016 0.005 0.008 0.000 0.007 0.023 0.025 0.009 

30 0.179 0.031 0.009 0.002 0.004 0.002 0.000 0.023 0.024 0.010 

36 0.189 0.034 0.005 0.003 0.004 0.000 0.000 0.023 0.022 0.010 

41 0.192 0.045 0.010 0.005 0.007 0.006 0.000 0.028 0.024 0.015 

Table II: Minimum RMSE along the alternative predictors 

at each horizon, and difference of the RMSE of each 

predictor to that minimum. 

 
  Difference from minimum RMSE 

  First Step Second Step 

H Min. RMSE C1 AEC AEC 

1 0.036 0.019 0.000 -0.030 

6 0.134 -0.001 0.003 0.000 

12 0.153 -0.003 -0.001 -0.006 

18 0.164 -0.007 -0.001 0.000 

24 0.171 -0.003 -0.001 -0.003 

30 0.179 -0.001 0.001 -0.005 

36 0.189 -0.002 -0.001 -0.010 

41 0.192 -0.004 -0.003 -0.015 

Table III: Minimum RMSE along the alternative 

predictors at each horizon, and difference of the RMSE of 

each combination with respect to that minimum. 

 

We see in this table that the proposed two steps 

combination methodology, together with the use of 

the proposed AEC method, helps to take the best 
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performance of a set of competing predictions for this 

wind farm.  

7. Conclusions 
 

Nine state of the art wind power prediction models 

have been compared in six wind farms. This is the 

first comparison that is carried out at European level 

on short term prediction. A framework has been 

developed for the benchmarking of the models, 

including a protocol for error analysis, common 

databases for each test case and the definition of a 

standard format for data and predictions exchange.  

 

The results showed a dependency of the prediction 

errors on the complexity of the terrain as well as on 

the forecast horizon. The distribution of errors was 

studied and also the relation of the errors with the 

power curve.  

 

Finally an algorithm to combine power prediction 

forecasts was developed and analysed, being possible 

to optimise the performance of a set of forecasts for a 

given wind farm. 
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